
36 Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

Efficient and Flexible Dynamic Reconfiguration for Multi
Context Architectures

Julien Lallet, Sébastien Pillement, Olivier Sentieys

INRIA Rennes - Bretagne Atlantique, Université de Rennes, F-22300 Lannion
e-mail: lallet@irisa.fr

1. INTRODUCTION

Systems on Chip (SOC) are generally based on
three main kinds of architecture. First, Application-Spe-
cific Integrated Circuits (ASIC) allow to efficiently com-
pute an algorithm due to dedicated hardware but are
unfortunately inflexible. Secondly, Generic Purpose Pro-
cessors (GPP) are the most flexible architectures, but
compute in an inefficient way. Finally, static reconfig-
urable architectures such as Field-Programmable Gate
Array (FPGA) are considered as a good compromise
between processors and ASIC. Meanwhile, mixed archi-
tectures have been developed in order to improve the
efficiency and the performance of GPP by the use of stat-
ic reconfigurable co-processors. These static reconfig-
urable co-processors embedded into an SoC, namely
embedded-FPGA (e-FPGA), have allowed GPP to fol-
low application developments. Dynamic reconfiguration
allows partial configurations at run-time, and thus
improves performances. Some specific processors and
FPGAs take advantage of dynamic reconfiguration in
their architecture by the use of the multi-context process.
This architectures are either Dynamically Reconfigurable
Processors (DRP) or Dynamically Reconfigurable
FPGAs. This is achieved by the local storage of any pos-
sible context. When a new configuration is required, the

system switches between one or the other context. The
major drawback of this solution is the silicon area and
power inefficiency caused by local memories needed to
store all the contexts. Our contribution to multi-context
DRA is the definition of a flexible and optimized struc-
ture that supports dynamic, partial and run-time recon-
figuration dedicated to both finegrain and coarse-grain
DRA structures. This is performed by only two configu-
ration memories, one current configuration memory and
one parallel configuration memory. The parallel configu-
ration memory is used for loading or saving contexts for
preemption to or from the configuration memory in one
clock cycle. New contexts are stored in this parallel con-
figuration memory thanks to a splittable scanchain.
Compared to previous multi-context Dynamically Re-
configurable Architectures (DRA), configurations exploit
efficiently the available silicon resources and enables the
implementation of any kind of computing granularity.

The paper is structured as follows. Section 2
describes related works on optimization of multi-con-
text DRA. Section 3 presents our contribution on
dynamic reconfiguration processes of DRA. In Section
4, we present the experimental method and discuss
results on a WCDMA receiver implementation on an e-
FPGA and on the dynamically reconfigurable processor
DART. Finally, Section 5 sums up this paper.

ABSTRACT1

Dynamic reconfiguration is possible on both fine-grain and coarse-grain architectures. One of the
used methodology used consists in the use of multi-context architectures. Unfortunately, the multi-
ple contexts bring power and area overhead. This paper introduces the Dynamic Unifier and
reConfigurable blocK (DUCK) concept, a new structure to perform efficiently dynamic reconfigura-
tion on both custom designed fine-grain and coarse grain architectures. The DUCK allows to sepa-
rate the configuration path and the configuration registers which facilitates simultaneous configura-
tion and computing steps. The reconfiguration process is presented in detail, and synthesis results
are given for different structures. Our solution is finally validated with the implementation of a
WCDMA (Wideband Code Division Multiple Access) receiver on a multi-context embedded FPGA
and on the dynamically reconfigurable processor DART.This implementation demonstrates the inter-
est and the efficiency of the use of dynamic reconfiguration and the proposed flexible structure.

Index Terms: Dynamically reconfigurable architectures, Multi-context.

05-Lallet-v4n1-AF 19.08.09 19:11 Page 36

Efficient and Flexible Dynamic Reconfiguration for Multi Context Architectures
Lallet, Pillement & Sentieys

2. RELATED WORKS

For a decade, many dynamically reconfigurable
architectures have been developed but only a few can be
considered as multi-context architectures, as they locally
store one or more parallel contexts. NEC-DRP [7] is a
massively parallel processor architecture. Reconfigu-
ration processes are managed by a central manager
which can select one futur context from 16 multi-con-
textmemories. For the architecture XPP [13] (eXtreme
Processing Platform), dynamic reconfiguration is man-
aged by a hierarchical manager composed of a tree of
sub-managers. A cache memory placed in parallel of the
configuration memory enables multi-context reconfigu-
ration. The Adres architecture [14] (Architecture for
Dynamically Reconfigurable Embedded Systems) stores
its configuration either in a RAM configuration memo-
ry or in the hierarchical memories for bigger configura-
tion spaces. The main constraint of these architectures
comes on one hand from the few flexibility offered by
these architectures in terms of computing granularity,
and, on the other hand, from the fact that this architec-
tures do not to achieve an efficient reconfiguration from
their parallel memory.

The only fine-grain architectures which imple-
ment dynamically reconfigurable computing are multi-
context FPGAs. Commercial FPGAs (e.g. Xilinx Virtex
family) allow dynamic reconfiguration, but the reconfig-
ured resources have to be stopped before a new config-
uration can be propagated [2]. Different approaches
have been proposed in the literature to reduce the exces-
sive silicon area used by multicontext FPGAs. First,
some works focus on the reduction of the configuration
words. In [6], the method consists in the limitation of
the connection map inside a switch box. In [1], the
authors reduce the context memory by using redundan-
cy and regularity in the configuration data. The first
method has the disadvantage to reduce routability. The
second is efficient only in good conditions of redundan-
cy and regularity, which is not the case for all applica-
tions. The second approach [3] is a technological solu-
tion which consists in the use of DRAM memories
instead of SRAM usually implemented for storing con-
figuration contexts. This allows to save between 10%
and 60% transistors, but causes a new problem concern-
ing mixed process of DRAM and logic.

3. EFFICIENT DYNAMIC RECONFIGURATION

In this section, we present the resource that is pro-
posed to make the reconfiguration efficient and flexible,
whatever to the granularity of the computing resource.

A. DUCK: Dynamic Unifier and reConfiguration
blocK

As mentioned in Section 2, multi-context recon-
figuration has provided solutions for fast reconfiguration

but generates redundant resources (local context mem-
ories) which contributes to a power inefficient design
even if some solutions have been developed. However,
the solution that we propose in this paper needs only
one context memory for each resource, independently
of the granularity of the computing resource. But, using
only one context memory means that it is necessary to
develop other architectural concepts in order to main-
tain the timing constraints and the flexibility required by
today’s applications. The first concept of our contribu-
tion consists in the isolation of the configuration paths
and the configuration resources which allows to prepare
new contexts during the computation. The Dynamic
Unifier and reConfiguration blocK (DUCK) is in charge
of the configuration path and has to swap the required
contexts to the configuration registers when needed.
The second concept consists in the possibility to split the
configuration path while maintaining a unique comput-
ing path in order to propagate the configuration
through several configuration paths at the same time.
Each configuration path composes a reconfiguration
domain. Figure1 shows an example of the implementa-
tion of the DUCK concept. This basic example imple-
ments interconnection units (Iu), computing units (Cu),
input and ouput units (IOu) and reconfiguration units
(Ru) namely the DUCK resources. For each units (Iu,
Cu or IOu) one DUCK (Ru) is associated and compos-
es the configuration path (black arrow in bold print).
The inputs of the two configurations paths are repre-
sented by the name ConfigIn(i) and the outputs by the
name ConfigOut(i). When the system is ready to recon-
figure, each DUCK swaps the configuration context
from its internal registers to the control registers of each
unit. Once the configuration is swapped, it is possible to
extract the context through the configuration path.

Figure 1. Example of a DRA composed of several kind of resources

37Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

05-Lallet-v4n1-AF 19.08.09 19:11 Page 37

Efficient and Flexible Dynamic Reconfiguration for Multi Context Architectures
Lallet, Pillement & Sentieys

38 Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

B. Dynamically Reconfigurable Architectures

According to the resource to reconfigure, the
DUCK implement different functions. In our DRA
model, the communication resources, called DyRIBox
(Dynamically Reconfigurable Interconnection Box),
switch signals from input ports to output ports. Each
DyRIBox has ni inputs and mi outputs on b bits at
each i of its four sides (North, South, West, East). The
total number of input and output ports is therefore

respectively. Depending on the
value of the configuration register, each input can be
connected to one or several outputs. To reduce the
complexity and the size of the configuration stream of
the DyRIBox, the number of inputs that can be
switched to an output is set to P, with P ≤ N.
Therefore, the DyRIBox contains M configuration
registers of [p = log2 P] bits.

In case of classical dynamic reconfiguration, the
reconfiguration time is too long for the given timing
constraints. To reduce this time, the reconfiguration
process of the DyRIBox and of the computing
resources is based on DUCK context registers (Figu-
re2). Each configuration register is connected to one
context register contained in the DUCK resource and
data could be swapped when needed.

In order to manage the reconfiguration
process, all DUCK registers are interconnected
through a scanpath bus. Scanpath registers are used in
design-for-test (DFT) techniques instead of classical
registers in order to extract the register value at any
time. The scanpath bus creates a unique big shift reg-
ister with all the scanpath registers of the architecture.
Thus, the extracted data flow is compared with the
test vectors during testing to detect errors in the com-
puting path. This method has been cited in [4] for
applying preemption in reconfigurable architectures
but has not yet been implemented. This was due to
the fact that the extraction time was too long for the
given timing constraints required by today’s applica-
tions.

The use of the configuration path in a scanpath
manner associated with the DUCK concept allows the
system to be reconfigured in one clock cycle. The use
of the DUCK registers allows the system to prepare
the next configuration while it is computing. The
propagation of a new context is done by three differ-
ent steps. First, the configuration registers are already
loaded with the current context (Figure2(a)). The
DUCK registers are waiting for the next step. Either
the new configuration is already propagated, or is
waiting to be configured. The second step (Figure2
(b)) shows how a new configuration is spread to the
DUCK registers. As explained before, the DUCK is
connected in a scanpath manner which allows to prop-
agate the next context. In case of preemption, the
process is still the same for extraction of the previous
context. Finally, each DUCK register swaps its data
with the configuration register. Every configuration
register is directly connected to a DUCK register. It is
noteworthy that in case of a new configuration identi-
cal to the current one, the configuration swap does
not disrupt the interconnection and computing
resource behavior. Therefore, reconfiguration is possi-
ble even if a computing datapath crosses a reconfigu-
ration area which it does not belong to.

Today’s SOCs use very different kinds of com-
puting resources, so that, for every new dynamically
reconfigurable architecture or computing resources, it
becomes more difficult to extract an homogeneous
reconfiguration protocol. The DUCK aims to solve
this issue. For example, considering a classical logic
cell (gray area on Figure3) several resources are part of
it. The reconfiguration path (area A) allows to set or
reset the output register, to select the sequential or
combinatorial output, and to select the carry input.
The memory area (B) allows to use the logic cell as
a RAM memory. The carry resources are needed for
arithmetic operations (area C). The LUT resources
are needed for the implementation of logical functions
(area D).

Figure 2. Reconfiguration process inside the DUCK structure

N = Σi= 0

3
 ni and M = Σi = 0

3
 mi

05-Lallet-v4n1-AF 19.08.09 19:11 Page 38

The configuration path goes through all configura-
tion registers and LUT registers. In this example, one logic
cell needs 20 clock cycles to be reconfigured. Thus, for an
e- FPGA composed of a n·m array of logic cells, n·m·20
clock cycles are needed to reconfigure the whole FPGA.
This time is not acceptable for fast reconfiguration. Our
solution, the DUCK (area E of Figure3) allows to shift the
configuration context locally in the same way as for the
DyRIBox and to swap the reconfiguration when needed.
Therefore, the whole embedded FPGA can be reconfig-
ured in 20 clock cycles. In the DUCK, a counter selects
each configuration register one after the other and shifts it
to the logic cell configuration path.

C. Results and Exploration

We present here exploration results on the
DUCK parameters. First, synthesis results are given to
estimate the impact on silicon area of the size of out-
puts and inputs, and the number of possible connec-
tions to one output. The critical path and power con-
sumption are also analyzed. All results are expressed as
a function of the computing data bitwidth. Results are
obtained with the synthesis tool Design Compiler
from Synopsys and for a 130nm CMOS technology.

The influence of DUCK parameters on design
area, power and critical path is given in Figure4. The
results have been obtained by changing the number of
outputs on the DyRIBox. First, the DUCK has clearly no
influence on the critical path results because of the phys-
ical separation of the configuration path and the config-
uration registers in the DyRIBox. Secondly, the more
connection possibility the DyRIBox has, the less impact
the DUCK has in the design area. This is explained by
the fact that the silicon area used for the interconnection
wires between inputs and outputs grows faster than the
silicon area used by the configuration/DUCK memories.
Due to custom libraries used for 8-bit words, the power
consumption is better controlled from this bitwidth than
for 4-bit data.

The interconnection network presented in [9]
consists in a set of reconfigurable circuit-switched
routers interconnected by links. One router is com-
posed of five 16-bit bidirectional ports connected
through a 16x20 fully connected crossbar. We have
generated and synthesized a DyRIBox associated to a
DUCK with the same functionality. The results are
given for the 130 nm CMOS technology from ST
Microelectronics. Area, frequency and power after
synthesis are given for the two solutions in Table I.
These results show that the simplicity of our solution
allows to keep as many flexibility as in their solution,
whereas our structure has only 4% area overhead and
a gain of 25% on the critical path and of 69% in power.

Figure 3. Simple logic cell architecture developed for fast reconfiguration

Figure 4. Influence of DUCK on area, power and time

Table I. Synthesis results compared with the 4S projects solution

Interconnection Area Critical Power
in mm2 Path in ns in mW

4S project 0.0506 930 17.32
DyRIBox 0.0526 692 7.22

Efficient and Flexible Dynamic Reconfiguration for Multi Context Architectures
Lallet, Pillement & Sentieys

39Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

05-Lallet-v4n1-AF 19.08.09 19:11 Page 39

Efficient and Flexible Dynamic Reconfiguration for Multi Context Architectures
Lallet, Pillement & Sentieys

40 Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

In conclusion, fast dynamic reconfiguration is
made possible by the use of the DUCK concept: the
separation of configuration path and the configuration
registers. A small overhead of silicon area for each logic
cell and interconnect box is involved by our method, but
on the other hand, the reconfiguration itself allows to
save resources compared to multi-context DRAs.
Furthermore, to maintain the timing constraint, it is
necessary to propagate each new context as fast as pos-
sible, so that the new tasks can swap in the most efficient
way. That is realized by the introduction of the split con-
figuration path. Indeed, when several configuration
paths are created, it is possible to propagate new con-
texts in parallel with each configuration path. This
method allows to reduce the propagation time with
regard to the number of configuration path used. The
following case study gives more precise results about
saved resources on a telecommunication application.

4. CASE-STUDY

In this section, we present the implementation
of a Wideband Code Division Multiple Access WCDMA
receiver on our embedded FPGA (Figure 6) and on
the dynamically reconfigurable processor DART.
WCDMA is a high-speed transmission protocol used
in third generation mobile communication systems
such as UMTS (Universal Mobile Telecommunica-
tions System), and is considered as one of the most
critical applications of third-generation telecommuni-
cation systems. It is based on the CDMA access tech-
nique where all data sent within a channel and for a
user to have to be coded with a specific code to be dis-
tinguished from the data transmitted in other chan-
nels [8]. The number of codes is limited and depends
on the total capacity of the cell, which is the area cov-
ered by a single base station. To be compliant with the
UMTS radio interface specification (UTRA – Univer-
sal Terrestrial Radio Access), each channel must
achieve a data rate of at least 128kbps. The theoretical
total number of concurrent channels is 128 channels.
As in practice only about 60% of the channels are used
for user data, the WCDMA base-station can support
76 users per carrier.

TheWCDMA application executed on our
reconfigurable architecture consists in the alternate
execution of three main tasks (Figure5): FIR (Finite
Impulse Response) filter, Searcher, and Rake Receiver.
Within a WCDMA receiver, real and imaginary parts
of the signal received on the antenna after demodula-
tion and digital-to-analog conversion, Sr(n), are fil-
tered by an FIR (Finite Impulse Response) shaping fil-
ters. Since the transmitted signal reflects in obstacles
like buildings or trees, the receiver gets several replicas
of the same signal with different delays and phases. By
combining the different paths, the decision quality is

drastically improved. Consequently, the Rake Receiver
combines the different paths extracted by the Searcher
block in order to improve the quality of the symbol
decision. Each path is computed by one finger which
correlates the received signal by a spreading code
aligned with the delay of the multipath signal. In our
case, a maximum number of fingers are considered.
This task is realized at the chip rate of 3.84 MHz. The
decision is finally done on the combination of all these
spreaded paths.

A. Timing Constraints

WCDMA is the highest speed transmission
protocol used in the UMTS system. The bandwidth of
the transmitted signal is equal to 5 MHz. The fre-
quency of the code corresponding to the chip rate
(Fchip) is fixed to 3.84 MHz. One slot is composed of
256 chip data. Registers are used to pipeline data
while FIR, Searcher or Rake Receiver are computing
in one slot. For better synchronization results, the
received chip is 4-time over-sampled. The computing
time available for the three functions (FIR, Searcher,
and Rake Receiver) is therefore tslot = 66.6_s between
the computation of two consecutive slots. The FIR
and Searcher computes on 1024 samples while one
Finger of the Rake Receiver computes on 256 sam-
ples. One sample is computed at each clock cycle.

B. e-FPGA implementation

The implementation of the WCDMA receiver
on an hardware accelerator composed from standard
logic cells as such implemented in a FPGA architecture
is presented. The interaction of a DUCK and a logic
cells allows the architecture to reconfigure the whole
resources in parallel.

Table II presents synthesis results obtained with
the VPR [15] and ABC Berkeley [16] frameworks. The
most complex function, the searcher, requires 4953
logic cells to be configured in the e-FPGA. It is there-
fore possible to implement the whole WCDMA decoder
into 4953 logic cells using dynamic reconfiguration. To
illustrate dynamic reconfiguration, the three functions
are executed sequentially in a time slot of 66.6µs i.e.
22.2µs for each function. Therefore, each function is
executed during 22.2µs while the next context is propa-
gated. As said previously, each function is completed in
1024 clock cycles, and the clock frequency is therefore

Figure 5. WCDMA receiver synoptic

05-Lallet-v4n1-AF 19.08.09 19:11 Page 40

greater than 46.55 MHz. The logic cell critical path has
a value of 0.6ns in a 130nm CMOS technology. Consi-
dering that the functions have a critical path of 13 logic
cells, the computing frequency can be up to 128.2
MHz. For a better power consumption, the frequency
can be reduced to a lower value maintaining the timing
constraint. For this implementation, the computing fre-
quency is set to 50 MHz (tcomputing = 20.48µs).

To perform dynamic reconfiguration, 4953 logic
cells need to be reconfigured in less than 22.2µs. One
logic cell has 20 reconfiguration bits and a DyRIBox 10
bits. A 6-bit width configuration path is used for its
good trade-off between performance and silicon area.
Therefore, 4953 x 30/6 = 24765 6-bit words are need-
ed for each context.

Thanks to our system architecture, the global
configuration is split into 8 reconfiguration domains
managed in parallel. Using a 300MHz clock frequency
for the reconfiguration process allows to reconfigure in
less than 11µs.

Figure 6 shows the implemented architecture
with 8 domains of 620 logic cells. Static memory is
used to allow data exchange between each functions.
Light-gray areas represent the 8 configuration paths
composed of 620 logic cells each. Each WCDMA func-
tion can be implemented on this architecture. The FIR
function is depicted as task T1. Its implementation
requires all domains and thus designs a unique com-
puting path. The Searcher function requires also the 8
domains and thus designs also a unique computing
path. The last function, Rake Receiver, can be split on
8 computing paths. One computing path for one fin-
ger. Assuming that a Finger implementation requires
561 logic cells, one domain is used for each finger. The

59 remaining logic cells are used to realize the decision
on symbol.

Figure 7 shows that the process of propagation,
computing and reconfiguration is fast enough to main-
tain the timing constraints thanks to the DUCK
resources in the DyRIBox and the logic cell. On one
slot time, the DUCK resources are able to extract the
previous context or propagate the future context.
PreeRFS means preemption of the Rake receiver or FIR
or Searcher contexts and ConfRFS means configuration
of the Rake receiver or FIR or Searcher contexts. The
NOP operation means that the DUCK resources are
waiting for working. Domain 0 and Domain 1 are giv-
ing an example of a complete WCDMA computing
implementation including Finger implementation.
Domain 7 gives an example where no Finger needs to
be implemented. The computing time (tcomputing) repre-
sents the available computing time of one function, the
propagation time (tpropagation) represents the available
time for the configuration and the preemption process-
es, and the reconfiguration time (tr) represents the time
needed to reconfiguration the whole domain. The syn-
thesis results the silicon overhead of the added local
configuration memories. The overhead silicon area of
the DUCK resource is 998µm2 for a DyRIBox and
1468µm2 for a logic cell. Considering that 4960 of the
two resources are implemented, the overall area over-
head can be estimated at 12.23mm2. It is important to
notice that 12926 logic cells should have been used for
a static implementation. Our implementation using
dynamic reconfiguration consumes 7966 logic cells less
than the static implementation. Considering that the
silicon area needed for a logic cell is 2160µm2 and
6850µm2 for a DyRIBox, we can estimate the saved
area to 59mm2. Thanks to partial reconfiguration
offered by today’s Xilinx FPGAs, it could be possible
to implement a WCDMA decoder on two areas of
4960 logic cells. This solution requires 4960 logic
cells more than our dynamic implementation.

Finally, Table III compares the same WCDMA
decoder implemented in a Xilinx Virtex FPGA. It can

Table II. Necessary logic-cells for WCDMA decoder implementa-
tion on a dynmicall reconfigurable architecture

FIR Searcher Rake Receiver
a Finger All

Logic cells 3475 4953 561 4488

Total 12916

Figure 6. Resource allocation of the implemented embedded FPGA

Efficient and Flexible Dynamic Reconfiguration for Multi Context Architectures
Lallet, Pillement & Sentieys

41Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

05-Lallet-v4n1-AF 19.08.09 19:11 Page 41

Efficient and Flexible Dynamic Reconfiguration for Multi Context Architectures
Lallet, Pillement & Sentieys

42 Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

be easily concluded that a dynamic reconfiguration is
not possible on the Virtex since the reconfiguration
of the entire FPGA takes more than 2ms [12] with a
configuration frequency of 60MHz and with the
SelectMAP interface which enable 8-bit word confi-
guration.

C. DART implementation

In this section, we present the implementation
of the WCDMA receiver on a hardware accelerator
composed from the computing resources of the
DART architecture.

The dynamically reconfigurable processor
DART [11] is a coarse-grain reconfigurable architec-
ture developed mainly for 3G mobile telecommunica-
tion application domain. DART architecture is build
around six computing elements called DPR
(DataPath Reconfigurable Figure 8). Each DPR is
composed of two registers (reg), four Address
Generators (AG) to access four local memories
(Datamem), and four FUs (functional units two
adder/subtracters and two multipliers). The DPR is
fully configurable thanks to a fully connected multi-
bus. The original architecture was fixed and it was not
possible to modify the structure of the DPR.

A DPR reconfiguration is executed in either 3 or
9 clock cycles.Thanks to the DUCK concept and the
parallelization of the reconfiguration processes, this
reconfiguration is reduced to one clock cycle. An exam-
ple of the interaction between a functional unit of a
DPR and its dedicated DUCK is given Figure 9. In this
example, each bit register used for the configuration of
the functionnality of the FU becomes a parallel config-
uration register so that each configuration bit can be
switched. Each DPR requires NbconfPE = 38 configura-

tion bits (Table IV). Figure 10 shows the implemented
architecture with 6 DPR needed for this application.
Therefore, 228 bits are needed for each configuration
of the whole DART architecture, interconnection
DUCK excepted.

Two kinds of interconnection units are used.
First, one kind of interconnection (DBdpr) is necessary
to connect all the resources inside a DPR. 18 inputs
are connectable to 10 outputs. Therefore, the config-
uration size (TCDBdpr) of this interconnection unit
requires :

TCDBdpr = 10 x [log2(18)] = 50 bits (1)

The second kind of interconnection unit
(DBcluster) is an 8-bitwidth crossbar type and is neces-
sary for the communication between the 60 registers
and functional units of all the DPR inside one cluster

Table III. Comparison between results on an enbedded FPGA
solution and on a Virtex commercial FPGA

System Logic Configuration Reconfiguration
Cells Size (8-bit word) Time

e-FPGA 4960 36k 22.2µs
XCV200 5292 164k 2.53ms

Figure 7. Gantt diagram of computing and reconfiguration process

Figure 8. A DPR computing element of the DART reconfigurable
architecture.

Table 4. Configuration size for each unit of one cluster of six DPR

Reconfiguration Size (Bits) Size (Bits) Size (Bits)
Target /Resource /DPR /Cluster

AG 1 4 24
Registers 1 6 36

Add/Subb(FU1-3) 3 6 36
Multiplier(FU2-4) 11 22 132

Total 38 228

05-Lallet-v4n1-AF 19.08.09 19:11 Page 42

with a maximum of 30 possible connections.
Therefore, the configuration size (TCDBcluster) of this
interconnection unit requires:

TCDBcluster = 8 x [log2(30)] = 40 bits (2)

The WCDMA implementation on DART has
already been presented in [10]. The configuration size
of all interconnection units (TCDB) requires TCDB =
6 x 50+40 = 340 bits. The complete bitstream size for
the whole DART architecture (TCDART) requires
TCDART = 228 + 340 = 568 bits. On DART, the
reconfiguration is executed at the same frequency as
the processing frequency, which is up to 130 MHz for
the reference design in [11].

The number of domains needed (ND) is speci-
fied by the available time between two configurations
(Propt). Propt is determined by the number of registers

to reconfigure and the speed of the configuration
memory to read the bitstream which is equal to 300
MHz. A complete new context can be propagated in

The shortest propagation time available is exe-
cuted during the channel estimation function. This
context is only implemented during 8 clock cycles.
Considering that for this application, the working fre-
quency is fixed to 93 MHz, the propagation time
available is then equal to 86.22 ns. Therefore, the
number of reconfiguration domain required to main-
tain the reconfiguration constraints are equal to:

ND = 241E -9

86.22E -9
 = 3

Propt = 580/8
300E6

 = 240 ns

Figure 9. DUCK Generated for a fast reconfiguration on DART architecture

Figure 10. Resource allocation on the implemented DPR of DART

Figure 11. Gant diagram of computing and reconfiguration process for the DART implementation

(3)

(4)

Efficient and Flexible Dynamic Reconfiguration for Multi Context Architectures
Lallet, Pillement & Sentieys

43Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

05-Lallet-v4n1-AF 19.08.09 19:11 Page 43

Efficient and Flexible Dynamic Reconfiguration for Multi Context Architectures
Lallet, Pillement & Sentieys

44 Journal Integrated Circuits and Systems 2009; v.4 / n.1:36-44

Figure 11 shows the timing implementation of
the different functions on one reconfiguration
domain. Each domain receives the same configuration
in parallel.While the cluster computes, the DUCKs are
receiving the different configuration simultaneously.
Next configurations are prepared during the execu-
tion of the functions. Csfc stands for configuration of
the function Synchronisation Fchip, Csfs for configura-
tion of the function Synchronisation Fsymb, Cec for con-
figuration of the function Channel Estimation, Cd for
configuration of the function Decoding, and Cf for
configuration of the function FIR.

5. CONCLUSIONS

In this paper, a new fast dynamically reconfi-
gurable concept for embedded hardware accelerator is
proposed. This method allows to use dynamic recon-
figuration and to gain in flexibility and in silicon area
while maintaining the timing constraints. The recon-
figuration time is reduced compared to traditional
FPGA or DRP. The proposed concept is based on the
isolation of the configuration paths and the configura-
tion resources, which allows to prepare new contexts
during the computations. The second concept con-
sists in the possibility to split the configuration path
while maintaining a unique computing path in order
to propagate the configuration through several con-
figuration paths at the same time. In the near future,
we will develop exploration tools in order to estimate
the possible configuration paths to automatically get
the best trade-off between speed, performance and sil-
icon area.

ACKNOWLEDGMENTS

This work has been performed in the context of
the CoMap project and is financed by the French
Ministry of Foreign Affairs. The authors would like to
thank A.Kupriyanov, D.Kiessler, F.Hanning, J.Teich,
B.Pottier and R.Keryell for their fruitfull collaboration.

REFERENCES

[1] M. Hariyama, W. Chong, S. Ogata, and M. Kameyama. Novel
Switch Block Architecture Using Non-Volatile Functional
Pass-Gate for Multi-Context FPGAs. In Proceedings of the
IEEE Computer Society Annual Symposium On VLSI (ISVL-
SI),2005, pages 46–50.

[2] I. Robertson and J. Irvine. A Design Flow for Partially
Reconfigurable Hardware. ACM Transaction on Embedded
Computing Systems, vol. 3, no. 2, May 2004, pages 257–283.

[3] D. Kawakami, Y. Shibata, and H. Amano. A prototype chip of
multicontext FPGA with DRAM for Virtual Hardware. In Asia
and South Pacific Design Automation Conference (ASP-
DAC), 2001, pages 17–18.

[4] D. Koch, A. Ahmadinia, C. Bobda, H. Kalte, and J. Teich. FPGA
Architecture Extensions for Preemptive Multitasking and
Hardware Defragmentation. In Proceedings of the IEEE
Conference on Field-Programmable Technology (FPT), 2004,
pages 433–436.

[5] L. Lagadec and B. Pottier. Object-Oriented Meta Tools for
Reconfigurable Architectures. In Proceedings of the SPIE
Conference on Modeling, Signal Processing, and Control ,
2000, pages 69–79.

[6] V. B. Lecuyer, M. A. Aguirre, A. B. Torralba, L. G. Franquelo, and
J. Faura. Decoder-Driven Switching Matrices in Multicontext
FPGAs: Area Reduction and Their Effect on Routability. In
Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), 1999, pages 463–466.

[7] M. Suzuki, Y. Hasegawa, V. M. Tuan, S. Abe, and H. Amano. A
Cost-Effective Context Memory Structure for Dynamically
Reconfigurable Processors. In Proceedings of the IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), 2006, pages 1101–1109.

[8] T. Ojanpera and R. Prasad. Wideband CDMA For Third
Generation Mobile Communication. Artech House
Publishers, Norwood, MA, USA, 1998.

[9] P. T. Wolkotte, G. J. M. Smit, and J. E. Becker. Energy-Efficient
NoC for Best-Effort Communication. In Proceedings of the
International Conference on Field-Programmable Logic,
Reconfigurable Computing, and Applications (FPL), 2005,
pages 197–202.

[10] R. David, D. Chillet, S. Pillement, and O. Sentieys. DART: A
Dynamically Reconfigurable Architecture Dealing with Future
Mobile Telecommunications Constraints. In Proceedings of
the IEEE Reconfigurable Architectures Workshop (RAW),
2002, pages 118–123.

[11]S. Pillement, R. David, and O. Sentieys. DART : A Functional-
Level Reconfigurable Architecture for High Energy Efficiency.
In EURASIP Journal on Embedded Systems, vol. 2008,
January 2008,13 pages.

[12]Xilinx. Virtex series configuration architecture. Technical
report, 2004.

[13]V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach and
M.Weinhardt PACT XPP - A Self-Reconfigurable Data
Processing Architecture, Journal of Supercomput, 2003,
pages 167–184.

[14]B. Mei, A. Lambrechts, D. Verkest, J. Y. Mignolet and R.
Lauwereins. Architecture Exploration for a Reconfigurable
Architecture Template, in IEEE Journal of Design and Test,
March 2005, vol. 22, no. 2, pages 90–101.

[15]V. Betz and J. Rose. VPR: A new packing, placement and
routing tool for FPGA research. in Proceedings of the
International Conference on Field-Programmable Logic and
Applications (FPL), 1997, pages 213–222.

[16]J. Pistorius, M. Hutton, A. Mishchenko, and R. Brayton.
Benchmarking Method and Designs Targeting Logic
Synthesis for FPGAs. In Proceedings of the ACM/SIGDA
International Workshop on Logic and Synthesis (IWLS),
2007, pages 230–237.

05-Lallet-v4n1-AF 19.08.09 19:11 Page 44

