
Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

22Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

Hardware Pipelining of Repetitive Patterns in Processor
Instruction Traces

I. INTRODUCTION

The performance of application running on a ge-
neral purpose processor (GPP) can be enhanced by mo-
ving computationally intensive parts (hotspots) to a Co-
processor Unit (CU, or simply coprocessor) [1-3]. While
many different approaches can be used to couple these
two components [4], in a common approach (illustrated
in Fig. 1) the CU communicates with the GPP by direct
connections and both have access to the system memory
(i.e., the CU acts as a traditional coprocessor).

GPP

CU

Data

Instructions

Figure 1: Block diagram of a typical target system which includes a
coprocessor (CU) acting as an accelerator of the GPP.

Hardware/software co-design [5, 6] is a me-
thodology for designing embedded systems consis-
ting of hardware and software components. An im-

portant part of this methodology is the identification
and mapping of application hotspots to hardware
(referred herein as hardware/software partitioning, or
simply partitioning). Partitioning contains steps such
as the detection of computation-intensive sections in
the application (also known as hotspots or critical
sections), mapping the computations to each of the
components of the target architecture (i.e., the sof-
tware and the hardware components), and adapting
the software application to use the hardware compo-
nent (e.g., calls to custom hardware units are inserted
in the application source code). This usually requires
the insertion of synchronization and data communi-
cation primitives.

Most efforts perform partitioning statically and
require the source code of the application (in some
contexts not available). Using the traditional approa-
ch, the final implementation is crystallized and is not
adapted to different runtime characteristics.

Dynamic partitioning and mapping of compu-
tations (hereafter referred as dynamic partitioning) is a
promising technique able to transparently move com-
putations from a GPP to a coprocessor in a transparent
way, and may become an important contribution for
the future reconfigurable embedded computing sys-
tems. Dynamic partitioning can be of paramount im-

AbsTRACT1

Dynamic partitioning is a promising technique where computations are transparently moved from a Gene-
ral Purpose Processor (GPP) to a coprocessor during application execution. To be effective, the mapping
of computations to the coprocessor needs to consider aggressive optimizations. One of the mapping opti-
mizations is loop pipelining, a technique extensively studied and known to allow substantial performance
improvements. This paper describes a technique for pipelining Megablocks, a type of runtime loop deve-
loped for dynamic partitioning. The technique transforms the body of Mega-blocks into an acyclic dataflow
graph which can be fully pipe-lined and is based on the atomic execution of loop iterations. For a set of 9 ben-
chmarks without memory operations, we generated pipelined hardware versions of the loops and esti-mate
that the presented loop pipelining technique increases the average speedup of non-pipelined coprocessor
accelerated designs from 1.6× to 2.2×. For a larger set of 61 benchmarks which include memory operations,
we estimate through simulation a speedup increase from 2.5× to 5.6× with this technique.

Index Terms: Reconfigurable Fabrics; Dynamic Mapping; Hardware Acceleration; Instruction Traces;
Loop Pipelining.

 João Bispo1, João M. P. Cardoso2 and José Monteiro3

1,3 CSE Dept., IST/UTL, INESC-ID, Lisboa, Portugal
2 INESC-TEC and Dept. of Inf. Eng., FEUP/Univ. of Porto, Porto, Portugal

e-mail: joaobispo@gmail.com, jmpc@acm.org, jcm@inesc-id.pt

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

23 Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

consider a Megablock S=[i5i6i7]. If S{3} is found in T,
it means that [i5i6i7i5i6i7i5i6i7] is a contiguous subse-
quence in T).

As an example, consider the vecsum function
depicted in Fig. 2. When a GPP executes the loop in
vecsum, a sequence of GPP instructions is repeatedly
executed. Fig. 3 shows the repeating pattern of a Me-
gablock found in the execution trace of vecsum when
executed in a MicroBlaze processor [9]. The Micro-
Blaze instructions are translated to processor-inde-
pendent instructions, which are then used to build a
graph-based intermediate representation. Fig. 4 repre-
sents the same Megablock pattern as a graph.

In this graph representation, rounded nodes re-
present operations; transparent square nodes represent
constants; and filled square nodes represent inputs and
exits. Input nodes represent values which are provided
by the GPP before loop execution begins. Updates to
input nodes are represented by connections with the
label feedback. Data connections between operations
contain a label which follow the format OUT:IN, whe-
re OUT and IN correspond to the output and input
index of the source and of the destination node, res-
pectively.

portance in allowing applications to take advantage of
reconfigurable fabrics existent in the host system and
thus to increase performance portability.

To increase the efficiency of dynamic mapping
techniques, one needs to consider optimizations, such
as loop pipelining. When mapping loops to Coarse-
Grained Reconfigurable Arrays (note that CGRAs can
be considered one possible type of CU), performance
can significantly improve if the iterations of the loop
are pipelined [7]. However, its use in the context of
dynamic partitioning has been neglected: it is usually
considered a complex optimization.

This paper presents a novel technique for pipe-
lining the iterations of Megablocks [8], a type of run-
time loop specifically developed to be used in dynamic
partitioning. By taking advantage of the characteristics
of the Megablock, it was possible to develop a ligh-
tweight pipelining technique. Although being applied
statically in the context of this paper, it is being develo-
ped bearing in mind its application at runtime. Addi-
tionally, the technique is able to commit loop iterations
atomically, avoiding the implementation of an epilo-
gue, and it proposes a module which handles certains
memory dependencies.

The rest of this paper is organized as follows.
Section II introduces the Megablock and Section III
explains how Megablocks can be pipelined. Section IV
proposes an architecture which implements pipelined
Megablocks. Section V presents results for two sets of
benchmarks, and Section VI discusses related work in
this area. Finally, Section VII concludes the paper and
presents some future work possibilities.

II. The MegAblOCk

A Megablock [8] is a runtime loop which conti-
nuously repeats the same sequence of instructions until
an exit condition is activated. It represents a repetitive
path formed during runtime, it has a single execution
path and one or more exit points. Megablocks are by
definition loops with well-defined control-flow, and
can be extracted from loops with arbitrary static con-
trol-flow if, during execution, the loop behaves in such
a way that forms patterns.

The Megablock formulation is as follows. Con-
sider a program P, which is formed by the sequence of
instructions [i1i2 … im]. Each instruction ij is uniquely
identified by an address. The execution of P genera-
tes a sequence T, called a trace, formed by instructions
from P. Consider S as an arbitrary size sequence of
instructions one can find in T (e.g., [i5i6i7] and [i8i2]
are two specific instruction sequences). A Megablock
is a sequence S, such that S{n}, with n greater than
1 and representing the number of times the sequence
S repeats, forms a contiguous subsequence of T (e.g.,

void vecsum(int* A, int* B, int* C, int n) {
 int i;
 for(i = 0; i < n; i++) {
 C[i] = A[i] + B[i];
 }
}

Figure 2. C code for the vecsum function.

Figure 3. MicroBlaze instructions of the pattern of a Megablock in
the execution trace of vecsum and their translation to intermediate
operations.

0:add

1:load

0:0

r5 (input)

0:0

r9 (input)

0:1

2:add

0:1

6:add

0:1

10:add

0:0

5:add

0:0

3:load

0:0

r6 (input)

0:0

0:1

7:store

0:1

0:0

r7 (input)

0:0 feedback (0)

4

0:1

4:add

r10 (input)

feedback (0)

8:rsub_carry

0:0 0:0

1

0:1

9:equalZero

0:0

r8 (input)

0:1

Exit:0

control

Figure 4. Graph representation of the Megablock pattern found in
vecsum.

0x00000180 lw r3, r5, r9 → 0:add, 1:load
0x00000184 lw r4, r6, r9 → 2:add, 3:load
0x00000188 addik r10, r10, 1 → 4:add
0x0000018C addk r3, r3, r4 → 5:add
0x00000190 sw r3, r7, r9 → 6:add, 7:store
0x00000194 rsubk r18, r10, r8 → 8:rsub_carry
0x00000198 bneid r18, -24 → 9:equalZero

0x0000019C addik r9, r9, 4 → 10:add

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

24Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

III. MegAblOCk PIPelININg

When a loop is pipelined, subsequent itera-
tions start executing before the previous iteration has
finished. Data dependencies [10] between iterations
(i.e., inter-iteration dependencies) can prevent the exe-
cution of iterations before certain conditions are met.
When pipelining the iterations of a loop, it is necessary
to guarantee that all true data dependencies are respec-
ted. We classify data dependencies in Megablocks into
two categories: register and memory dependencies.
Register dependencies are data dependencies between
registers in assembly instructions and are explicitly re-
presented in the Megablock graph by data connections.
Feedback connections are data connections between
consecutive iterations, and represent inter-iteration
register dependencies. Memory dependencies are not
explicitly represented, and correspond to operations
which manipulate data in a medium external to the
processor (e.g., memory accesses). To pipeline Mega-
blocks, we propose a scheme capable of handling regis-
ter dependencies, and that can be applied to loops wi-
thout inter-iteration memory dependencies. This may
seem a severe restriction, but does not prevent us to
pipeline Megablocks found in many signal/image pro-
cessing kernels as shown by the experimental results.

Currently, we consider that Megablocks without
inter-iteration memory dependencies are manually
identified by analysis of the source code. Automatic de-
tection of the necessary conditions for pipelining gene-
ric Megablocks will be addressed in future work. This
requires memory aliasing analysis for removing intra-i-
teration memory dependencies.

A. Inter-Iteration Register Dependencies in
Megablocks

Consider the graph representation in Fig. 4 of the Me-
gablock depicted in Fig. 3. We developed an algorithm
to identify the expressions responsible to control the
value of the inputs in subsequent iterations, and to
build directed graph representations for those expres-
sions (see Fig. 5). In each input node with a feedback
connection in Fig. 4, traversing the graph in the oppo-
site direction of the connection reaches the node that
generates the input value for the next iteration. E.g.,
following the feedback connection in node r9 (input)
the values of the input are given by the output of node
10:add. This is the condition to start a new graph. As
it is the first time the algorithm sees the node 10:add,
this node is added to the graph. As this node is an ope-
ration, the algorithm is called recursively to each of its
parent nodes. All the inputs of node 10:add are either
of type input or constant, thus after they are added to
the graph, the algorithm stops. The resulting graph re-
presents the update expression for r9 (input), which in
this case is r9 = r9 + 4. The algorithm continues by

considering the next input node with a feedback con-
nection, r10 (input), and repeats the process. As this is
the last input with a feedback connection, there are no
more expressions to identify, and we obtain the Inputs-
Graph in Fig. 5.

Stage
110:add

r9 (next)

r9 (input)

0:0

4

0:1

:add

r10 (next)

r10 (input)

0:0

1

0:1

Figure 5. InputsGraph for the vecsum Megablock in Figure X.

The update of the values of the inputs throu-
gh iterations can be handled by a hardware structure
which implements the InputsGraph. This structure be-
comes responsible to feed a new set of values to the
Megablock at the beginning of each iteration. This
way, the feedback connections can be removed from the
original Megablock graph (see Fig. 4), transforming it
to an acyclic dataflow graph which can be fully pipeli-
ned. This technique is appropriate for loops where the
operations related to the update of values used across
iterations represent a small part of the loop. As we will
see later, the lower the latency of the module related to
the update of inputs, relative to the original loop, the
greater the potential for improvements.

B. Inter-Iteration Memory Dependencies in
Megablocks

A Megablock does not have inter-iteration me-
mory dependencies if one can guarantee that: 1) store
operations are done according to their original order;
and 2) the contents of the addresses accessed by load
operations are not changed during its execution. Gua-
rantee 1) implies a mechanism for serializing memory
writes, and can be enforced by hardware implementa-
tion. This satisfies output dependencies between me-
mory writes. Guarantee 2) depends on the program and
compiler options. Since with this guarantee the values
accessed by load operations are immutable, it avoids true
dependencies and anti-dependencies between memory
accesses. This guarantee can be enforced when programs
use separate memory areas (e.g., occurring with non
-overlapped arrays) for reading and writing values. As
Guarantee 1) can be enforced by hardware, we only have
to ensure that Megablocks respect Guarantee 2). E.g.,
vecsum (see Fig. 2) uses different arrays for reading and
writing, respecting Guarantee 2). Currently, we assume
that information is provided by the compiler as addi-
tional information. Future work will address Megablock
analysis to provide that information.

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

25 Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

IV. ARChITeCTURe FOR PIPelINeD
MegAblOCks

Fig. 6 presents the modules needed by our approa-
ch for pipelining Megablocks. The solution in Fig. 6b)
is a specialization of the solution in Fig. 6a), when con-
sidering Megablocks without memory accesses. Both so-
lutions have an Input Module (IM) and a Loop Module
(LM). The support for memory accesses (Fig. 6a) inclu-
des a Store Module (SM) and load units in the LM mo-
dule. Both solutions aim at executing iterations atomically,
i.e., iterations are either fully executed or discarded when
an iteration activates an exit point.

LM

IM

SM

Load

Load LM

IM

a) with memory operations b) without memory operations

Figure 6. General block diagrams for pipelined execution of Mega-
blocks.

The LM module represents a pipelined dataflow
implementation of the Megablock repeating pattern
and can be thought as the loop body split into several
stages. Each preceding stage executes the next iteration
of the Megablock, and when the LM advances a step,
which can take one or more clock-cycles, depending
on the Megablock and its implementation, all stages
execute simultaneously. An iteration completes when
it finishes execution at the last stage of the LM wi-
thout activating exit points. All exit points are delayed
so that when they are checked, the corresponding ite-
ration is in the last stage. After filling the pipeline, the
LM completes an iteration per step. To advance a step,
the LM needs the values generated by the IM. The IM
is responsible for generating the set of inputs per itera-
tion, and only depends on the values generated in the
previous step of the IM.

According to Guarantee 1) for memory depen-
dencies, store operations have to be executed by their
original order. Since the LM executes operations of di-
fferent iterations simultaneously, the technique moves
the store operations outside of the LM, i.e., to the SM.
The LM delays all store operations until the last stage,
and only executes them if no exits are activated for that
iteration, avoiding speculative writes to memory. The
SM depends on the results of the LM. According to
Guarantee 2) for memory dependencies, load opera-
tions are done from immutable locations. This means
that load operations can be done in any order, and

remain in the LM. However, in this case the step of
the LM module only finishes after all load operations
complete.

Fig. 7 presents a possible schedule for the Loop
Module of the Megablock graph in Fig. 4 when using
an As-Soon-As-Possible (ASAP) based scheduler [11],
after feedback connections are removed and store opera-
tions are moved to a separate module.

Stage
1

0:add 2:add 4:add 6:add

1:load 3:load 8:rsub

Stage
2

5:add

Stage 3

9:equal
Zero

10:add

Figure 7. Loop Module (LM) schedule for a Megablock found in ve-
csum.

A. Pipeline Scheduling

One can execute the modules shown in Fig. 6 one
at a time, sequentially (Fig. 8a). However, the IM only
depends on its previous values, and as soon as it finishes
execution, it can start computing the values of the next
iteration. When pipelining the modules, we can overlap
the execution of the IM with the remaining modules,
leading to an overlapping schedule (Fig. 8b to d).

Consider that the IM execution is separated in
two parts, IM-A and IM-L, which are executed concur-
rently. IM-A refers to the execution or arithmetic and
logic operations (e.g., additions, subtractions). IM-L
corresponds to the execution of load operations. In this
model, store operations are not allowed in the IM. The
IM is separated in these two components because the
number of concurrent memory accesses usually is very
limited in real systems, and when the IM execution
overlaps with the execution of the remaining modules,
they will compete for the same limited resources. We
consider that the execution of the IM associated to load
operations (IM-L) does not overlap with the remaining
modules (LM and SM), which can also have memory
operations.

The LM can have a similar decomposition,
LM-A and LM-L, where the arithmetic and logic com-
ponent executes concurrently with the both IM-A com-
ponent and the memory related components, in a third
overlapping level. However, as the LM is pipelined, the
arithmetic-logic part usually executes within one clo-
ck cycle, and the load operations represent the longest
execution part of the LM. For simplicity, this decompo-
sition was not considered. When considering the case
without memory accesses, we use a similar schedule,
which includes neither the SM nor the decomposition.

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

26Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

Software pipelining algorithms [12, 13] usually
have a prologue, a steady state, and an epilogue. The
purpose of the epilogue is to orderly terminate the exe-
cution of iterations which cannot execute in the steady
state because there are no more new iterations to feed
the pipeline. Our approach does not have an epilogue.
Since we atomically commit iterations that have fi-
nished, we can simply ignore the iterations which have
already started but have not yet terminated by the time
an exit activates. When an exit activates, the store ins-
tructions related to that iteration are not performed.

IM(step) LM(step) SM(step)

RPU Iteration

a) Sequential – Steady State

LM(stages-1)

RPU Iteration

IM-A(stages)IM-A(1)
...

IM-L(1) IM-L(stages)

b) Overlapping - Prologue

LM(step+stages-1) SM(step)

RPU Iteration

IM-A(step+stages)

IM-L(step+stages)

c) Overlapping – Steady State

LM(stages+iterations)

RPU Iteration

d) Overlapping – Exit Iteration

Figure 8. Sequential and overlapping schedule for the modules of a
pipelined RPU.

B. Calculating Coprocessor Latencies

In this section we describe analytical expressions
to calculate estimations of the clock cycles needed to
execute Megablocks. Term CU-xxxCy represents the
number of cycles of coprocessor execution for a specific
case. Term LMStg represents the number of LM stages,
while NIt represents the number of completed Mega-
block iterations.

Equations (1) and (2) define CUCy for the over-
lapping schedule with memory accesses, while (3) con-
siders the absence of memory accesses. The terms IM
-A(i)Cy, IM-L(i)Cy, LM(i)Cy, and SM(i)Cy (1) represent
the clock cycles needed to complete the step i of the
corresponding module. Equations (2) and (3) consider
each module always execute in a fixed number of cycles,
represented by the terms IM-ACy, IM-LCy, LMCy and
SMCy. Usually, the latency of the LM is determined by

the latency of the load operations. Since the LM is pi-
pelined, if an LM does not have load operations, it will
have the shortest step between all modules (usually one
clock cycle). In this case, the IM latency becomes the
dominant term. Considering the overlapping schedu-
le without memory accesses, this means that the Max
operation in Equation (3) can in most cases be simpli-
fied to IMCy. Equation (4) represents the approximate
number of clock cycles used by the coprocessor, for the
overlapping schedule, when Megablocks execute for a
large number of iterations, well above the number of
stages of the LM. This equation is useful for calculating
maximum theoretical speedup limits when comparing
with non-pipelined versions of the architecture.

C. Hardware Module for Pipelining Megablocks

Fig. 9 shows the general architecture for a 2D
Unfolded CGRA, consisting of a reconfigurable array
with several rows of FUs and forward communication
links between rows (only the last row is represented in
the figure). This CGRA contains an Iteration Control
module that stops CGRA’s execution if an exit condi-
tion is activated. The FUs which communicate with the
Iteration Control module can be used to implement the
operations which signal exits.

Note that this is just one of several possible ar-
chitecture implementations. For instance, we can build
non-reconfigurable hardware modules which imple-
ment a single Megablock using a similar architecture,
or use an architecture that requires less resources (e.g.,
1D Folded CGRA [14]). However, to take advantage
of hardware loop pipelining, we need an architecture
which physically implements the several stages of the
pipeline.

To enable our Megablock pipelining approach
in such CGRAs, we propose three hardware extensions
presented in Fig. 10: (a) feedback lines to the top row,
for the IM; (b) clock-enable control signals for each mo-

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

27 Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

If the mapping of Megablocks can be done at
compile instead of runtime (e.g., with the help of pro-
filing[15]), we can translate the Megablocks to HDL
descriptions which directly implement the Megablocks
(see Fig. 11). In this case we trade-off the flexibility
of runtime mapping for specialized designs which can
be more efficient resource and performance-wise. The
execution is similar to what was described for the 2D
Unfolded CGRA architecture in Fig. 9; the iterations
are executed atomically, and the output of each opera-
tion is registered so that we can apply the same pipeli-
ning transformations.

V. exPeRIMeNTAl ResUlTs

We have developed a scheduler and a simulator
tool for estimating the execution of a program when
moving highly complex Megablocks to a coprocessor.
The simulator considers the architecture presented in
Fig. 10. To evaluate the proposed pipelining techni-
que, we developed a proof-of-concept VHDL gene-
rator which converts a Megablock graph into a spe-
cialized hardware module. For each Megablock, the
tool can generate a hardware module in VHDL which
corresponds to the architecture in Fig. 11. The tool can
generate pipelined and non-pipelined implementations
of the same Megablock. The pipelined modules use the
overlapping schedule described in Section III. The cur-
rent version of the VHDL generation tool does not
deal with Megablocks with memory operations. Note
that non-pipelined Megablocks have been already tes-
ted and evaluated using an FPGA board (see [14]),
and there is recent work focused on adding support to
memory operations [16].

We start by considering a set of simple ben-
chmarks without memory operations, named as mem-
oryless (compress1, count, even_ones, expand, fibonacci, ham-
ming_dist, popcmpr, reverse and gcd1). We implemented a
single Megablock per benchmark. For this set we synthe-

dule; and (c) delays for the exit signals (for simplicity,
the CGRA in the figure only has three rows). The exten-
sions enable the implementation of the IM, the LM, and
the SM at the hardware level. The feedback connections
from intermediate rows to the top row (a) are needed
for IM re-alimentation. This kind of interconnection
can be expensive, but since only Input Modules with
a low number of stages are attractive for implementa-
tion, these connections can be present in only a restric-
ted number of top rows. Since the modules have pro-
ducer-consumer relationships between them, we use a
Step Controller (b) to send clock-enable control signals
for each row of FUs. This way it is possible to indicate
when there are values available for each module, and
when they can proceed. The tapped delay lines (simple
1-bit shift-registers) for the exit signals (c) synchronize
the signals so that when they activate, they always cor-
respond to the iteration in the last stage.

LD/ST
1

LD/ST
M FU 1 FU 2

Interconnect

FU N

Iteration
C

ontrol

Exit Condition

LD/ST
1

LD/ST
M FU 1 FU 2 FU N

Interconnect

Exit Condition

Fe
ed

ba
ck

Step
Controller

IM
S

te
p

InputM
odule

Loop
M

odule

a)

b)

c)

Interconnect

LD/ST
1

LD/ST
M FU 1 FU 2 FU N

Exit Condition

Interconnect

Store
M

odule

LM
S

te
p

S
M

S
te

p

LD/ST
1

LD/ST
M FU 1 FU 2

Interconnect

FU N

Interconnect

R
ow

K

Output Registers

Row K-1

Iteration
C

ontrol

Exit Condition

Write Enable

C
onfiguration

B
its

R
ow

1

Figure 9. General architecture for a 2D CGRA-based RPU which
supports Megablocks.

Figure 10. General architecture for a 2D CGRA-based coprocessor
which supports Megablock pipelining.

add and

or

equal
zero

Input Registers

Output Registers

Iteration
C

ontrol

Write Enable

Exit Condition

Figure 11. A specialized implementation for a possible Megablock.

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

28Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

sized two versions of the coprocessor hardware module,
with and without pipelining, to measure resource usage,
confirm the execution clock cycles, and test the approach.
A second set of 61 benchmarks named embedded include
memory operations. The source codes of the benchmarks
were examined to guarantee that inter-iteration memory
dependencies were not present (future work will consi-
der an automatic analysis). For this set we present overall
speedup estimations for non-pipelined and pipelined Me-
gablocks. For the overall speedup estimations, we consi-
der a system architecture composed of a coprocessor cou-
pled to the GPP. We use a MicroBlaze [9] as the target
GPP with direct communication links to the coprocessor
through FSL connections. The overall application spee-
dups consider all communication overheads.

All benchmarks were compiled using mb-gcc 4.1.2
with the O2 flag. For the hardware modules we selected
a Xilinx Spartan-6 LX45 FPGA as target. We consider a
coprocessor with a maximum of 8 arithmetic/logic and
2 load/store units per row. Each of the arithmetic/logic
units can be used to signal Megablock exits. We assume
execution clock cycles of the operations equal to the ones
requires by MicroBlaze equivalent instructions, when
the processor is optimized for speed [9]. As with other
approaches [1], we assume each memory operation can
be completed in a single clock cycle. We also consider that
the coprocessor is coupled to local memories allowing
up to two simultaneous memory accesses per clock cycle
(e.g., dual-port BRAMs). We use both the GPP and the
coprocessor clocked at the same frequency.

Table I presents a comparison between the overall
speedup obtained by the memoryless set, when conside-
ring non-pipelined and pipelined Megablock implemen-
tations. It contains information about the speedup, and
the Critical Path Length (CPL) of the non-pipelined and
pipelined designs. On average, pipelining Megablocks
represents an increase in speedup of 1.4× (from 1.6× to
2.2×), over the non-pipelined implementation. However,
in roughly half the cases of performance degradation oc-
cur after pipelining. With respect to the resource increase
between FPGA designs (Fig. 12), in all cases, the pipeli-
ned implementations used more FFs (flip-flops), between
1.3× and 1.7×, and generally, the number of LUTs (look
-up tables) also increased (between 1.01× and 1.8×).
Table I. Comparing non-pipelined with pipelined architectures using
the memoryless set.

benchmark Non-
Pipelined
speedup

Pipelined
speedup

Non-
Pipelined

CPl

steady
state
Delay

Avg.
Iter. per

call

compress1 1.65 1.54 4 4 29
count 1.72 1.64 3 3 31
even_ones 1.68 2.07 3 2 31
expand 1.66 1.54 4 4 29
fibonacci 2.32 6.83 3 1 2378
h a m m i n g _
dist 1.66 2.04 3 2 31

popcmpr 1.00 1.16 4 2 8.4
reverse 1.88 1.79 3 3 31
gcd1 0.97 1.22 8 6 166.2
average 1.62 2.20 3.89 3 303.9

The increase in resources and the performance
degradation can be explained by the characteristics of
the benchmarks. For the pipelining technique to be able
to provide speedup over the non-pipelined versions, the
latency of the steady state of the pipelined version must
be lower than the CPL of the non-pipelined design.
According to Table I, in all cases where the CPL re-
mained the same, there was performance degradation.
Having the CPL of the pipelined module very close to
the CPL of the non-pipelined module indicates that the
IM is replicating most of the critical path of the LM. As
these are small benchmarks, the critical path represents
a large portion of the Megablock body. We expect that
in examples with memory accesses, the IM represents
a much smaller portion of the Megablock body (e.g.,
mostly related to updates to the memory offsets), lea-
ding to lower increases in the resources needed for the
pipelined designs. Fig. 13 presents overall application
speedups for the set embedded. Without Megablock pi-
pelining, we get slowdowns from 0.4× to speedups of
7.3× and an average speedup of 2.5× (or 2.1×, when
using the geometric mean). With Megablock pipeli-
ning, we get slowdowns from 0.2× to speedups of 32×,
with an average speedup of 5.6× (or 3×, when using
the geometric mean). We observe that in several cases
(16 in this set, 26% of the benchmarks) the pipelining
contribution amplifies coprocessor speedups by a fac-
tor of 2 or more. E.g., we estimate a speedup of 3× for
vecsum before pipelining and a speedup of 5.8× with an
overlapping schedule.

Figure 12. FPGA resources increase when using pipelining with
overlapping schedule over the non-pipelined implementation.

When considering benchmarks with memory
accesses, we achieve noticeable speedup improvements
after pipelining (see columns Speedup Improvement in
Table II). For instance, change_brightness and composit-
ing went from a speedup of 1.6× to a speedup of 9.3×;
checkbits, from 4.1× to 12.4×; compress2, from 2.5× to
32×. These improvements can be explained by two fac-
tors, presented in Table II. The first factor is the ratio
between the average CPL of the executed Megablo-
cks before pipelining (CPL Non-Pipelining column),
and the average number of cycles of the steady state
when Megablocks execute using the overlapping sche-

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

LUTs FFs Max. freq. (MHz)

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

29 Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

VI. RelATeD WORk

Dynamic partitioning and mapping is being
increasingly focused by researchers. In the context of
dynamic partitioning and mapping, loop pipelining,
possibly due to its complexity, has not attracted the
desired attention. To the best of our knowledge, our
work is one of the first approaches considering loop
pipelining in the context of dynamic partitioning and
mapping. In this section we present relevant dynamic
partitioning and mapping schemes in the context of
reconfigurable computing systems. We also introduce
some relevant loop pipelining approaches.

A. Approaches considering Dynamic Partitioning

We present here three approaches considering
dynamic partitioning and mapping schemes in the con-
text of reconfigurable computing systems. Specifically,
we briefly describe the Warp Processor [2, 17], the DIM
Reconfigurable System [1, 18], and the CCA [3, 19].

The Warp Processor [2, 17] is a runtime re-
configurable system which uses a custom fine-grained
reconfigurable hardware (dubbed W-FPGA) as a har-
dware accelerator for a GPP. The system performs all
steps at runtime, and attains significant speedups for
benchmarks with bit-level operations. They report an
average speedup of 6.3× over a set of 15 benchmarks.

The DIM Reconfigurable System [1, 18] pro-
poses a reconfigurable array of FUs in a mesh-like to-
pology and transparently maps single basic blocks (an
improved version also considers speculation) from a
MIPS processor to the array. They report an average
speedup of 2.5× over a subset of the MiBench suite.

The CCA [3, 19] is composed of a reconfigu-
rable array of FUs in an inverted triangular shape,
coupled to an ARM processor. CCA work addresses
control-data flow graph detection and mapping. They
report an average speedup of 2.3× over a set of 29 ben-
chmarks. Warp is the only approach of the three which
considers entire loops, while CCA and DIM present
speedups by only exploiting ILP using a small number

dule (Steady State Latency column). The ratio between
these two values (CPL/Latency Ratio column) is an
upper-bound for the possible increase in speedup when
applying pipelining. E.g., crc32 went from a speedup
of 1.6× to a speedup of 32× after pipelining, which
represents an improvement of 20×. The corresponding
ratio is 24.5×. The second factor is the number of ave-
rage iterations per Megablock call (last column). Note
that for all examples in Table II, the number of average
iterations is high (above 99). When using pipelining,
the improvement comes from the steady state execu-
tion. The higher the portion of execution is spent in
the steady state (instead of the prologue), the closer
the improvement is to the upper bound speedup given
by the ratio between the baseline CPL and the steady
state latency.

Table II. Sample CPL comparison between non-pipelined and pipe-
lined with overlapping schedule.

Benchmark CPL Non-
Pipelined

Steady
State
Delay

CPL/
Latency

Ratio

Speedup
Improve-

ment

Avg.
Iter. p/

call

change_b. 12 2 6 5.81 99

checkbits 16 4 4 3.02 166

composit-
ing 15 2 7.5 5.81 199

compress2 65 4 16.3 12.8 999

crc32 49 2 24.5 20 109

fibonacci 3 1 3 2.96 2,378

gouraud 6 2 3 2.94 1,999

isqrt3 112 2 56 10.12 99

isqrt4 73 2 36.5 9.05 99

pix_sat 14 2 7 6.73 2,000

quantize 6 2 3 2.69 199

rgb_to_hsv 55 16 3.4 3.04 499

1.41.2

3.1

5.7

1.5

3.5

4.7

2.0

9.3

1.5

7.2
7.8

1.6
1.2

2.5
2.1

1.5

6.76.8

9.6

1.21.3

9.1

2.0

0.8
0.4

1.0

2.1
1.7

1.21.1
0.50.4

2.3

0.7

2.0

0.4

2.2

4.0

7.4

1.2

2.0

6.0

1.8

7.0

1.5
1.1

6.0

9.7

5.8 6.1
5.55.5

3.8

5.7

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

ad
pc

m
_c

od
er

ad
pc

m
_d

ec
od

er
au

tc
or

bi
lin

ea
r

bo
b_

ha
sh

bo
un

da
ry

ch
an

ge
_b

rig
ht

ne
ss

ch
ec

kb
its

ch
ec

ks
um

co
m

po
sit

in
g

co
m

pr
es

s1
co

m
pr

es
s2

co
nv

_3
x3

co
rr

_g
en

co
un

t
cr

c3
2

di
vl

u
do

tp
ro

d
ev

en
_o

ne
s

ex
pa

nd
fd

ct
_8

x8
fib

on
ac

ci fir
gc

d1
gc

d2
go

ur
au

d
ha

m
m

in
g_

di
st

id
ct

_8
x8

_1
2q

4
isq

rt1
isq

rt2
isq

rt3
isq

rt4
lo

ok
up

2
m

ad
_1

6x
16

m
ad

_8
x8

m
ax

m
ax

st
r1

m
ax

st
r2

m
ed

ia
n_

3x
3

m
od

ex
p

m
ot

io
n_

es
tim

at
io

n
m

ul
in

v
pe

rim
et

er
pe

rli
ns

pi
x_

ex
pa

nd
pi

x_
sa

t
po

pc
m

pr
po

pc
nt

qu
an

tiz
e

re
ve

rs
e

rg
b_

to
_h

sv
_i

nt
sa

d_
16

x1
6

sa
d_

8x
8

sm
oo

th
so

be
l

ve
cs

um
w

av
e_

ho
rz

w
av

e_
ve

rt
yc

_d
em

ux
_b

e1
6

yc
_d

em
ux

_l
e1

6
yc

bc
r4

22
p_

rg
b

av
er

ag
e

Sp
ee

du
p

Non-Pipelined Pipelined with Overlapping Schedule

32.012.4 32.0 25.3 18.132.012.4 32.0 25.3 18.1 28.5 11.5

Figure 13. Individual overall speedups for a non-pipelined and a pipelined architecture with overlapping schedule, considering a maximum of 8
parallel arithmetic/logic FUs and 2 load/store operations per clock cycle.

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

30Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

of basic blocks. To the best of our knowledge, however,
Warp does not consider loop pipelining.

B. Loop Pipelining

Loop pipelining, also known as software pipe-
lining [12, 13], is a technique which has been extensi-
vely studied and proved to attain substantial increases
in performance. The technique has been extensively
applied in the context of both software and hardware
compilers. It is a technique that must be part of every
relevant high-level synthesis tool.

Loop pipelining is also important when ma-
pping computations to CGRAs (see, e.g., [20]).

In the context of static binary compilation, Paek
et al. [21] propose an approach which detects loops by
performing static analysis of the binary. In their work
they decompile the code and analyze loop structures.
They focus on innermost loops, without branches and
whose iteration count can be determined statically.
They also consider loop unrolling when the iterations
of both the inner and the outer loop can be determined
statically (only the inner loop is unrolled). The detected
loops are mapped offline to a data-flow oriented CGRA
which supports context pipelining. After loops are de-
tected, the binary is modified to include the CGRA
mapping and communication routines. They report an
average speedup of 9.4× when using examples of the
DSPstone benchmark suite [22].

However, to the best of our knowledge, our
approach is one of the first to address loop pipelining
in the context of a dynamic partitioning system.

VII . CONClUsION

We presented a technique for pipelining loops
when transparently mapping computations from a
GPP to a coprocessor unit. We took advantage of the
characteristics of a particular runtime loop, the Mega-
block, to simplify the creation of pipelined loops (e.g.,
the Megablock loop contains only one control path).
We further explored loop pipelining techniques under
these circumstances, such as avoiding the implemen-
tation of an epilog by using atomic loop iterations, or
delay memory store operations to the end of the ite-
ration to avoid output dependencies, simplifying the
implementation of atomic iterations.

We performed an analytical analysis on the con-
ditions necessary for having increased performance with
this technique, and suggested an architecture suppor-
ting this kind of pipelining. We evaluated two different
approaches and sets of benchmarks: a first one which
uses hardware implementations and simulation, and a
second one relying on simulation and estimations. In
a set of benchmarks without memory operations we
increased the average speedup from 1.6× to 2.2×, after

applying loop pipelining. In a set of 61 benchmarks
with memory accesses the average speedup increased
from 2.5× to 5.6×. For some particular benchmarks,
the speedup improvements ranged from 3× to 20×,
when compared with the non-pipelined version.

Dynamic partitioning can be a useful technique
that enables taking advantage of reconfigurable hardwa-
re transparently. Although it is unlikely that an approa-
ch for automatic optimization of general computations
will have better results than a handcrafted solution, the
improvements achieved by dynamic partitioning can
be good enough to justify the approach. Using loop
pipelining is therefore an important technique to reach
this goal. Future work will address the runtime analysis
of Megablocks, using schemes to identify suitable Me-
gablocks for pipelining and streaming based mapping
techniques.

ACkNOWleDgeMeNTs

The authors acknowledge the partial support by
the European Community’s Framework Programme 7
(FP7) under contract No. 248976. We would like to
acknowledge the fruitfull discussions with Nuno Pauli-
no regarding his Megablock-based system prototypes.

ReFeReNCes

[1] A. C. Beck, M. B. Rutzig, G. Gaydadjiev, et al., “Run-Time
Adaptable Architectures for Heterogeneous Behavior Embe-
dded Systems,” in Proc. 4th Intl. Works. Reconf. Comput.:
Architectures, Tools and Applications, 2008, pp. 111-124.

[2] R. Lysecky, G. Stitt, and F. Vahid, “Warp Processors,” ACM
Trans. Des. Autom. Electron. Syst., vol. 11, pp. 659-681,
2006.

[3] N. Clark, J. Blome, M. Chu, et al., “An Architecture Framework
for Transparent Instruction Set Customization in Embedded
Processors,” in Proc. 32nd Ann. Intl. Symp. Computer Archi-
tecture (ISCA’05), 2005, pp. 272-283.

[4] 	S.	 Hauck	 and	 A.	 DeHon,	 Reconfigurable	 computing:	 the
theory and practice of FPGA-based computation: Morgan
Kaufmann Pub, 2008.

[5] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Hardware/Sof-
tware Codesign: a Systematic Approach Targeting Data-inten-
sive Applications,” IEEE Signal Processing Magazine, vol. 22,
pp. 14-22, 2005.

[6] G. Stitt, F. Vahid, and S. Nematbakhsh, “Energy savings and
speedups from partitioning critical software loops to hardwa-
re in embedded systems,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 3, pp. 218-232, 2004.

[7] V. Baumgarte, G. Ehlers, F. May, et al., “PACT XPP—A Self
-Reconfigurable	Data	Processing	Architecture,”	J.	Supercom-
put., vol. 26, pp. 167-184, 2003.

[8] J. Bispo and J. M. P. Cardoso, “On Identifying and Optimizing
Instruction Sequences for Dynamic Compilation,” in Proc. Intl.
Conf. on Field-Programmable Tech., Beijing, China, 2010, pp.
437-440.

[9] I. Xilinx, “Microblaze Processor Reference Guide v13.4,” refe-
rence manual, 2011.

Hardware Pipelining of Repetitive Patterns in Processor Instruction Traces
Bispo, Cardoso & Monteiro

31 Journal Integrated Circuits and Systems 2013; v.8 / n.1:22-31

[17] R. Lysecky and F. Vahid, “Design and implementation of a
MicroBlaze-based warp processor,” ACM Transactions on
Embedded Computing Systems, vol. 8, pp. 1-22, 2009.

[18] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, et al., “Transpa-
rent	 reconfigurable	 acceleration	 for	 heterogeneous	 embed-
ded applications,” in Proc. Conf. Design, Automation and Test
in Europe (DATE’08), Munich, Germany, 2008, pp. 1208-
1213.

[19] 	N.	Clark,	M.	Kudlur,	H.	Park,	et	al.,	“Application-Specific	Pro-
cessing on a General-Purpose Core via Transparent Instruc-
tion Set Customization,” in Proc. 37th Ann. IEEE/ACM Intl.
Symp. Microarch., Portland, USA, 2004, pp. 30-40.

[20] B. Mei, S. Vernalde, D. Verkest, et al., “ADRES: An Architec-
ture with Tightly Coupled VLIW Processor and Coarse-Grai-
ned	 Reconfigurable	 Matrix,”	 in	 Field-Programmable	 Logic
and Applications, ed, 2003, pp. 61-70.

[21] J. K. Paek, K. Choi, and J. Lee, “Binary acceleration using
coarse-grained	reconfigurable	architecture,”	ACM	SIGARCH
Computer Architecture News, vol. 38, pp. 33-39, 2011.

[22] V. Zivojnovic, J. M. Velarde, C. Schlager, et al., “DSPstone:
A DSP-oriented benchmarking methodology,” in Proc. of the
Intern. Conf. on Signal Processing and Technology, 1994, pp.
715-720.

[10] J. Hennessy, D. Patterson, D. Goldberg, et al., Computer ar-
chitecture: a quantitative approach: Morgan Kaufmann, 2003.

[11] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, et al.,
“Chapter 9 Sequencing and scheduling: Algorithms and com-
plexity,” in Handbooks in Operations Research and Manage-
ment Science. vol. Volume 4, A. H. G. R. K. S.C Graves and
P. H. Zipkin, Eds., ed: Elsevier, 1993, pp. 445-522.

[12] B. R. Rau, “Iterative modulo scheduling: An algorithm for sof-
tware pipelining loops,” 1994, pp. 63-74.

[13] V. Allan, R. Jones, R. Lee, et al., “Software pipelining,” ACM
Computing Surveys (CSUR), vol. 27, pp. 367-432, 1995.

[14] J. Bispo, “Mapping Runtime-Detected Loops from Micropro-
cessors	 to	Reconfigurable	Processing	Units,”	PhD,	 Instituto
Superior Técnico, 2012.

[15] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, “The MO-
LEN processor prototype,” in 12th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM), 2004, pp. 296-299.

[16] N. Paulino, J. C. Ferreira, and J. M. P. Cardoso, “Architectu-
re for Transparent Binary Acceleration of Loops with Memory
Accesses,” presented at the 9th International Symposium on
Applied	 Reconfigurable	 Computing	 (ARC’2013),	 Los	Ange-
les, USA, 2013.

