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Abstract— Analog signal acquisition in Compressed Sens-
ing is implemented by Analog to Information Converters (AIC)
whose physical implementation performance can be degraded
due to hardware non-idealities. Methods based on comparison
of the recovery of known signal with the expected output for
calibration were proposed to compensate the hardware effects.
However, such methods produces different results according to
the recovery method. In this paper, we consider an AIC ar-
chitecture composed by parallel channels and the problem of
non-synchronization in channels that reduces the AIC perfor-
mance. Using a controlled delay signal, we proposed a method
to estimate each channel delay without the necessity of signal
recovery. The results show that it is possible to measure delay
in the channels of an AIC with a minimum accuracy of 1 µs.
Moreover, this method can be used in any AIC architecture
composed of two or more parallel channels.

Index Terms— AIC; Channel; Non-synchronization; Delay;
Estimation.

I. INTRODUCTION

Compressed Sensing (CS) theory provides an approach
for simultaneous signal sampling and compression, ensuring
the possibility of to overcome the limits of traditional sam-
pling based on the Shannon Theorem by exploring sparse
representation of signals. Such approach avoids signal re-
dundancy acquisition, which implies a decrease in sampling
frequency compared to the Nyquist rate.

The Analog to Information Converter (AIC) is the hard-
ware to analog signal acquisition in the Compressed Sensing.
Depending on the application domain, a specific architecture
is proposed [1], and utilization of AIC compared to Analog-
to-Digital Converter (ADC) acquisition increases the ap-
plication performance, as in Magnetic Resonance Imaging
(MRI) processing [2].

Independent of architecture, the physical implementations
of AIC suffer from the components imperfections and noise
interference due to circuit design and fabrication [3, 4], like
any device that employs mixed-signal technologies, mainly
when off-the-shelf (OTS) components are used. These prob-
lems can cause, for example, gain and offset errors [5] and
loss of synchronization between the input signal and the AIC
control signals [6], which compromises the measurement
and consequently the signal reconstruction quality. The ap-
plication of a calibration process can overcome these prob-
lems improving the AIC performance.

Regarding the problem of synchronization between the in-
put signal and the AIC control signals, some AIC calibra-

tion methods deal this problem by using sinusoids with un-
known phases to estimate the frequency response of the sys-
tem transfer and blind calibration using sparse recovery algo-
rithms to estimate the delay coefficients [7, 8, 9, 10]. How-
ever, these algorithms are sensible to their input parameters
and, depending on the reconstruction method, may not corre-
spond the ideal response, which may mask effects produced
by the physical characteristics of the AIC.

In this paper, we extended our previous work [6], present-
ing practical results and emphasizing that this delay estima-
tion method can estimate the timing mismatch in channels of
a parallel AIC implementation. The proposed method uses
a copy of the sensing functions of the AIC itself and, unlike
the other methods, does not depend on reconstruction algo-
rithms.

With regards to the organization of this paper, Section II
is presented an introduction to Compressed Sensing describ-
ing the fundamental aspects, the architecture of the AIC used
in this paper and the experimental setup. In Section III the
problem of phase error is presented. In Section IV the pro-
posed estimation method is discussed. The results are pre-
sented in Section V and in Section VI the conclusion is pre-
sented.

II. COMPRESSED SENSING

In simple terms, the CS framework can be expressed as
the relation

y = Φx (1)

where x is a discrete-time signal with length n, Φ is an m ×
n sensing matrix and y is the measurement vector of length
m corresponding to the compressed version of x, regarding
m < n.

In eq. 1, the signal x is sparse, i.e., most of its components
are equals to zero, or they can be zeroed due to their small
values compared to the other signal components. If x is no
sparse, it can be sparsely represented by using a sparsifying
basis Ψ, i.e,

x = Ψs (2)

where s = {s1, s2, ..., sn} is a sparse vector. The measure-
ment process is now represented by

y = ΦΨs = Θs. (3)

Recovery of a signal x from the measurements y can be
performed by solving the optimization problem

min
s

||s||0 subject to Θs = y, (4)

Digital Object Identifier 10.29292/jics.v17i2.562



2 ARRUDA et al.: A Method for Delay Estimation Between Channels of Analog to Information Converters

where || · ||0 is the quasi-norm l0, that provides the support
of vector s. Such minimization permits to recover the sparse
signal s with high probability, however this is a NP-hard
problem. It was shown that to overcome such complexity
problem the l1-norm minimization,

min
s

||s||1 subject to Θs = y, (5)

can be used.
To guarantee a successful recovery, matrixΘ has to sat-

isfy necessary and sufficient conditions, as incoherence and
restricted isometry property (RIP) [11].

Analog-to-Information Converter (AIC) implements the
analog signal acquisition in Compressed Sensing. In general
such equipment receives a continuous-time signal x(t) and
produces a discrete-time measurement vector y by project-
ing the input over a set of sensing functions Φ, 1 ≤ i ≤ m.
For the i-th component of the measurement vector y

yi =

∫ T

0

x(t)ϕi(t)dt. (6)

in which ϕi(t) is the sensing function and T is the measure-
ment period.

Some architectures implementing eq. 6 have been pro-
posed [12]. In previous works [13, 14], we developed both a
simulation model and a hardware implementation of a paral-
lel channel AIC based on Random Modulation Pre-Integrator
described as follows.

A. Random Modulation Pre-Integrator (RMPI)

The RMPI is a compressed sensing AIC proposed by [15],
which is an ideal approach for almost all types of sparse sig-
nals. It is a parallel-channel Random Demodulator (RD), as
shown in Fig. 1, taking nearly random linear combinations
of samples, similar to the multiplication of the discrete-time
signal x by a sensing matrix Φ [16].

Fig. 1 Block diagram of the Random Modulation Pre-Integrator.

The analog input signal x(t) is multiplied by the i-th
Pseudo-Random Binary Sequence (PRBS) and then inte-
grated over a time window T . Then, the resulting output
yi is digitized by an ADC with sampling rate 1/T conver-
sions per unit time, which is much smaller in relation to the
Nyquist rate to acquire the signal x(t) [15].

B. Experimental Setup

In this work, we use an 8-channel configurable RMPI, as
proposed in [13, 14], composed by a digital part and an ana-
log part, as represented in Fig. 2. The digital part consists
of a Field-Programmable Gate-Array (FPGA) implementing

a Linear-Feedback Shift-Register (LFSR). The LFSR struc-
ture configuration follows a primitive polynomial, and values
generated by the LFSR iterations are the PRBS of each chan-
nel [17]. Such values generate at FPGA output the sensing
functions ϕi. The FPGA also generates commands to con-
trol both measurement process (start and stop periods) and
signals to reset filters. A computer stores the measurements
for off-line analysis.

Fig. 2: Block Diagram of a RMPI based configurable analog-to-information
converter based on RMPI architecture [13]

The analog part is composed by OTS components and is
responsible for multiply the analog input signal x(t) by the
sensing function ϕi(t). This hardware has 4-quadrant multi-
pliers with a typical full-scale error of ±2% and attenuation
of 20 dB. After multiplication, each signal pass by an analog
first order configurable low-pass filters (acting as integrators)
with gain stages, where their components present tolerances
between ±1% and ±5% and their cutoff frequencies (5 Hz,
18 Hz, 28 Hz, 50 Hz, 189 Hz, 284 Hz and 507 Hz) config-
ured according to the desired ADC sample rate and recovery
resolution [14].

A MATLAB/Simulink model of this configurable AIC im-
plemented as described in [13] is considered as a reference
of recovered signals since there is no nonlinearity or noise in
the model.

III. PROBLEM FORMULATION

Ideally, PRBS in all channels of an AIC are synchronized,
i.e., the sensing functions ϕi(t) for all channels i = 1, ...,m
start at the same instant t and range all N periods of the sens-
ing function. However, due to hardware non-idealities, one
or more sequences can have a delay. This is represented in
Fig. 3, where x(t) is the input signal and ϕi(t) is a sensing
function composed by a sequence of square pulses with am-
plitudes ±1 delayed by ∆i. This behavior on the i-th channel
measurement can be modeled as

ŷi =

∫ T

0

x(t)ϕi(t−∆i)dt, (7)

where ∆i represents the delay in the i-th channel. When
providing the sensing matrix (Φ) and the measurement vec-
tor (y) to a reconstruction algorithm that solves the eq. 5,
signal reconstruction will be degraded due to sensing matrix
mismatch the practical one.

Using the MATLAB/Simulink model of the RMPI de-
scribed in Section II, a constant delay ∆ defined as a frac-
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Fig. 3: Synchronism problem between AIC signals: sensing function de-
layed by ∆ with respect to the input signal.

tion of the PRBS period TPRBS was introduced in all chan-
nels. Simulating this scenario with parameters presented in
Table I, the effect of delay was evaluated by Signal-to-Noise
and Distortion Ratio (SINAD) [18, 19] of obtained measure-
ment values, as shown in Fig. 4.

Table I. Parameters set up on SINAD simulation.
Parameter Value

Input signal Sinusoid
Input signal amplitude 1 Vpp

Input signal frequency 1 kHz

Primitive polynomial (PRBS) x5 + x3 + x2 + x+ 1

Measurement matrix dimension (M ×N) 8× 32

Low-pass filter cutoff frequency ≈ 50 Hz
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Fig. 4 SINAD behavior according to channel delay.

A null channel delay implies synchronization in all chan-
nels, while as ∆i increases SINAD decreases exponentially,
which demonstrates the negative effect of delay on AIC per-
formance. To avoid the distorted measurement ends up lead-
ing to inadequate reconstruction of the input signal, the value
of ∆i must be estimated in order to compensate the measure-
ment.

IV. PROPOSED ESTIMATION METHOD

To estimate the channel delay ∆i, we propose a method
based on an indirect measurement, using a known and con-

trollable input signal. The correlation between this input sig-
nal x(t) and the sensing function in each channel ϕi(t) is
analyzed. In this case, to obtain a correlation value, the in-
put signal becomes a copy of the sensing function ϕi(t) with
controlled phase (delay) τ , that is, ϕi(t− τ). Thus, the mea-
surement of the i-th channel, which is the correlated value of
the two signals, is given by

ŷi =

∫ T

0

ϕi(t− τ)ϕi(t−∆i)dt. (8)

Analyzing Equation 8, it can be noticed that by varying
the parameter τ , ŷi will have the maximum value when τ is
equals to ∆i. In this case, the expected value of the mea-
surement ŷi will be numerically equals to T , when both sig-
nals present the highest level of correlation with each other
(assuming that all measurements have an initial value equal
to zero). In practice, however, ŷi will not be numerically
equals to T , as the integrators are not ideal. As proof of con-
cept, let’s consider a simulation of the AIC described in Sec-
tion II, performing measurement of a signal x(t), according
to the parameters described in Table II, assuming all sensing
functions ϕi(t) being equal to x(t) as shown in eq. 8 and that
all AIC channels have an unknown ∆i delay.

Table II. Parameters set up on simulation/hardware.
Parameter Value

Input signal Pulse
Input signal amplitude 2 Vpp

Input signal frequency 1 kHz

Duty cycle 50 %
Low-pass filter cutoff frequency ≈ 50 Hz

To estimate the delay of each channel, we vary phase τ
of x(t) between 0 s and 50% of TPRBS and observed the
values of ŷi. Fig. 5 shows the measurement values of each
channel obtained by simulation according to channel delay τ ,
as well as the ideal value for perfect synchronization between
signals. It is important to notice that for the ideal case in this
simulation scenario, the measurement value is 1.72 V for all
channels.
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Fig. 5 Correlation values between input signal and measurement signals
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It can be seen that the maximum value of the measurement
occurs when the controlled delay τ is as close as possible to
∆i, i.e., the channel delay is estimated according to the first
curve peak. However, for better accuracy, it is necessary to
decrease the variation step of the controlled delay, so that
when τ = ∆i, the measurement ŷi reflects the maximum
correlation. In this way, this method can be applied to ob-
tain an estimate of the delay in each channel of the AIC, and
the values obtained can be used to compensate the measure-
ments during the signal reconstruction step.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed method, simulations and
hardware experiments were performed based on the param-
eters presented in Table II. We set a delay ∆i of 5 µs on
each of the 8 channels of the AIC and simulated a sweep of
τ values from 0 to 10 µs (steps of 1 µs), to obtain a refer-
ence curve for the hardware experiment. Fig. 6 shows the
behaviour of the measurements ŷi in function of τ .
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Fig. 6: Measurement values of the i-channel versus the variation of con-
trolled delay (τ ) of the input signal.

It can be noticed the peak value of the measurement occurs
exactly when the controlled delay τ is equal to ∆i, i.e., as
the phase of the input signal approaches the delay inherent
in the channel, the measurement value reaches its maximum
value. In contrast, when the input signal phase is greater than
channel delay, the measured value decreases.

In hardware, the measurement value was also obtained
in function of the controlled delay τ . It is worth notice
that in this measurement, gain and offset errors arising from
hardware non-idealities also become visible and it is nec-
essary to attenuate them. Fig. 7 shows the values of mea-
surements without compensation compared to the expected
ideal values. By means of gain and offset errors calibra-
tion/compensation method proposed in [5], we compensated
the measurements, as can be seen in Fig. 8.

In Fig. 7 it is possible to clearly observe the influence
of gain and offset errors, making it difficult to quantify the
difference in relation to the ideal behavior of the measure-
ment. With compensated gain and displacement errors, as
can be seen in Fig. 8, it is possible to observe that the effects
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Fig. 7: Measurement values in 8 AIC channel and ideal measurement (sim-
ulation) without compensated measurements.
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Fig. 8: Measurement values in 8 AIC channel and ideal measurement (sim-
ulation) with compensated measurements.

caused by these errors are mitigated and there is a tendency
towards the expected behavior of the measurements, show-
ing, on most channels, maximum value when the controlled
delay is 5 µs.

In another perspective, in Fig. 8, it can be noticed that the
values present a certain variation in the ideal trend. This can
be explained by the influence of noise on the measurement,
since this method is performed using a low amplitude signal.
Furthermore, it is possible to observe that in some channels
the maximum value of the measurement happens at 7 µs,
which can be justified by the natural delay of each channel
and by the measurement noise. It is worth remembering that
a delay of 5 µs was configured on each channel, however, as
the hardware, by definition, is not ideal, there is no guarantee
that each channel may present a natural delay. Despite this,
in a situation where the influence of noise is minimal, the
important thing to note is the first peak of the measurement.
Considering a real situation in which the delay is different for
all channels, each one must be analyzed individually in order
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to make a correct estimate, avoiding that in the reconstruc-
tion of the compensated measurement it is a time-shifted ver-
sion of the input signal, which can cause the effect shown in
Fig. 4.

VI. CONCLUSION

In this paper, a delay estimation in channels of AIC
method was presented. Unlike other estimation methods pre-
sented in the literature, the proposed method does not rely
on using sinusoids with unknown phases to estimate the fre-
quency response of the system transfer and blind calibration
using sparse reconstruction algorithms, since it obtains delay
values before signal reconstruction. It is possible to provides
these values for any compensation method, so that the effect
of the reconstruction algorithms is removed. The obtained
results demonstrate that it is possible to estimate the delay of
each channel without the use of reconstruction algorithms,
matrix manipulations and test signals [7, 8], using a simple
and easy-to-implement approach. However, it is still neces-
sary to carry out further studies on how to use these estimated
values in the measurement compensation, so that the method
can be better evaluated with, for example, figures of merit. In
another way, it is worth mentioning that although the whole
procedure is mathematically simple, it is necessary to control
the phase of the input signal and, depending on the number
of AIC channels and the desired accuracy, it can take a long
time.
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