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Abstract—This paper intends to make a brief presentation of 

in integrated circuits’ developments and efforts towards new 

wireless applications at the millimeter-wave frequencies band. 

Considering low-cost applications for the consumer market, it 

is shown that using only one technology is not desirable for cost 

and size reasons. The 3D integration becomes a necessity for 

the new applications in such frequencies, pushing forward al-

ternative technologies and new 3D interconnection techniques. 

 
Index Terms—Millimeter-wave systems. Millimeter-wave 

devices. Interposer. 3D interconnection. CMOS technologies . 

I. INTRODUCTION 

In the millimeter-wave frequency range (from 30 GHz to 

300 GHz, referred to “mmW” in this paper) several unli-

censed frequency bands are being selected for point-to-point 

high-bandwidth communication links. These multi-gigabit 

links are crucial for the infrastructure of the emerging RF, 

mmW and THz consumer applications serving the markets 

of high-speed telecommunications systems (next generation 

of mobile communication, 6G and beyond), 77GHz/120GHz 

automotive radars, mmW imaging and high sensitivity radar 

sensors. The telecommunication and radar sensors systems 

are ubiquitously transforming the fields of transportation 

(autonomous and connected vehicles), smart mobility, ro-

bot’s industry for security systems and medical applications, 

and digital life. For that, one of the key electronic blocks is 

the phased arrays antennas [1], [2], [3]. In the frequency 

range of the 5G systems, the whole solution has been ad-

dressed and different commercial solutions are available, alt-

hough in the frequencies above that for future low-cost ap-

plications, the challenge remains. 

To answer this increasing demand, in the past fifteen years, 

the CMOS/ BiCMOS technologies have evolved signifi-

cantly to produce transistors with ft/fmax higher than 

300 GHz. These silicon technology capabilities at higher 

frequency have encouraged many research laboratories and 

industries to work on the development of low-cost and low-

power mmW front-ends for consumer market. Their main 

focus of development was not only around the unlicensed 

60 GHz band [4], but also between 77 GHz [5] and 120 GHz 

for automotive radars and back-hauling, or even at, 140 GHz 

and above for mmW imaging, security or medical applica-

tions. This makes CMOS a realistic competitor to III-V ma-

terials like GaAs pHEMT/mHEMT for some applications, 

with for example mixers, amplifiers, VCOs and also com-

plete systems, for example a phased array receiver. How-

ever, CMOS/ BiCMOS mmW power amplifiers exhibit a 

poor power-added efficiency (less than 15 %). As the mmW 

communication required line-of-sight, and the free-space 

attenuation is high, transmissions are limited to short range 

of tens of cm if only a single antenna is used. In order to 

address medium to long communication distances (from one 

meter up to a km) for back-hauling, antenna arrays with 

beam-steering capability are needed, since antenna arrays 

focus the emitted/received signal in the direction of the 

RX/TX, leading to a longer and more efficient point-to-point 

communication [6]. Finally, in order to integrate such mmW 

systems, the overall cost of the system must be significantly 

reduced [7], [8]. 

Besides the great improvement of the silicon technology 

on active components, the development of efficient passive 

circuits is crucial to improve the performance of mmW cir-

cuits and systems. These systems need high-performance 

baluns, diplexers, filters, matching networks, and distribu-

tion networks for antenna arrays. The Back-End-Of-Line 

(BEOL) of CMOS/BiCMOS technologies is the main limit-

ing factor for the development of high-performance passive 

circuits. Its thickness is smaller than 10 µm for advanced 

technologies (40-nm CMOS and below, 130-nm BiCMOS 

and below), leading to transmission lines with poor quality 

factor [9]. 

It seems clear that the critical passive wavelength-based 

circuits (baluns, diplexers, filters, couplers, antennas) must 

be realized off-chip for performance and cost reasons. For 

that, a solution consists on using 3D hybrid integration, ei-

ther by realizing the passive circuits above IC, or by using 

an interposer that supports passive circuits, as exemplified 

in Fig. 1. An interposer is an interlayer placed between dif-

ferent technologies, mostly between the master board (a 

printed circuit board - PCB) and on-chip circuits (realized in 

various technologies: Silicon, GaAs, InP, photonics, MEMS 

etc.) that can interconnect their signals. Circuits can be in-

terconnected in an interposer using transmission lines on its 

top or bottom surfaces or through the interposer using vias. 

Several technology suppliers, institutes and academic labor-

atories have been working on the development of interposers 

for almost two decades. Today, high-resistivity
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Fig. 1 Example of a mmW wireless system with 3D interconnections 

to explore the use of the best of each technology aiming a low-cost 

system for consumer market. 
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silicon (HR-Si) is mainly used as mmW interposer [10], 

[11], [12]. It is reasonably low-cost and it guarantees an ex-

pansion coefficient that is compatible with silicon devices 

(CMOS or BiCMOS). HR-Si interposers can be fabricated 

using well-established microelectronic processes, derived 

from CMOS technology. However, they exhibit a major 

drawback for mmW applications: it is technologically diffi-

cult to realize high aspect ratio (defined by the length di-

vided by the diameter) Through-Substrate-Vias (TSV). Fur-

ther, these vias are frequency-limited due to the intrinsic 

MOS capacitor of the TSV on HR-Si. Other interposers such 

as fused silica [13], [14] and liquid crystal polymer (LCP) 

[15], [16], [17] have also been proposed again with fabrica-

tion difficulties and limited performance. In [18], the Metal-

lic-nanowire-Membrane (MnM) interposer is proposed as a 

new generation of interposer that yields high-performance 

and miniaturized transmission lines and vias in a simple, 

low-cost fabrication process, which will be reviewed in this 

work. 

These advances aligned with the 3D interconnections de-

velopment pave the way for future 3D mmW hybrid circuits 

and systems. 

II. THE MNM INTERPOSER 

The MnM interposer (Fig. 2), is a 50 µm-thick alumina 

membrane (Anodic aluminum oxide or AAO) with na-

nopores that go straight from one surface to the other. Alu-

mina is an excellent dielectric and widely used in the RF in-

dustry. The nanopores of the alumina membrane can be eas-

ily filled with metal by electrodeposition, forming nan-

owires, allowing the realization of vias and slow-wave mi-

crostrip lines or SIWs. With this configuration, it is possible 

to design high performance low and high characteristic im-

pedance transmission lines [19] and vias (Fig. 3) reaching 

0.09 dB @110 GHz per via transition [20], both with re-

duced size in a low-cost technology. This technology uses 

simple fabrication without high temperatures or limited I/O 

density, proving to be an excellent alternative to the new de-

mands at millimeter-wave.  

The accurate modeling of this interposer was described in 

[21] and several basic circuits in mmW have been demon-

strated with good performance. Then, several passive struc-

tures used in general microwave systems were developed. 

Initially, simple structures were demonstrated only for per-

formance purposes without any optimization shown in Fig. 

4: baluns [22] with insertion loss better than 1.5 dB @59-69 

GHz and return loss better than 10 dB; couplers [23] with 

power unbalance of less than 0.4 dB and output phase

 

difference of 90 ̊± 3̊ @54-67 GHz. 

3D structures were further designed due to the availability 

of high-performance small nanowire-vias in this interposer, 

such as crossovers up to 110 GHz [24] with maximum inser-

tion loss of 1.5 dB (not de-embedded), imbalance of 0.2 dB, 

phase imbalance of 3.3°, and isolation of 30 dB (Fig. 4); 3D 

inductors [25] with SFR of 91 GHz, quality factor of 35 @40 

GHz and values up to 17 nH and 3D transformers [26] (Fig. 

5) with different impedance ratios and even structures based 

on substrate integrated waveguide technology which pre-

sented state-of-the-art results. 

III. PHASED ARRAY ANTENNAS 

Nowadays, the key device in a phased array system that 

still requires a solution is the phase shifter. High-perfor-

mance phase shifters must be developed, which must offer 

low consumption in order to address mobile applications and 

small footprint for cost considerations [27]. Therefore, the 

digital phase-shifters will not be considered in this review 

for their high consumption. There are two main families of 

analog phase shifters - active and passive - presenting trade-

offs between power consumption or transmission loss and 

footprint. The active phase shifters are small, but consume 

high power [28], [29], [30] leading to complex thermal dis-

sipation mechanisms for systems with large antenna arrays. 

Several technologies have been used to develop passive 

phase shifters at mm-waves, including CMOS/BiCMOS, 

BST, Liquid Crystal, dielectric and MEMS. The passive 

phase shifters presented in the literature are either small with 

high losses [31], [32] or large with low losses [33], [34], 

[35]. Semiconductor-based components (varactor diodes, 

 Fig. 2 MnM interposer with different fabricated structures. 

Fig. 3 Nanowire-Vias in the MnM interposer [20]: (a) top view of the 

fabricated device. (b) side view schematic showing the used layers. 
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Fig. 4 (a) Hybrid coupler [23] , (b) baluns in a back-to-back configura-

tion [22], and (c) crossover [24] on the MnM substrate 
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MOS varactors, FET switches and pin diodes) can be con-

sidered as tuning elements, but their quality factor at mmW 

is still poor. On the other hand, MEMS technology can be a 

suitable candidate to achieve low-loss circuits [36], [37] es-

pecially considering in the mmW front-end path. Some ex-

amples of a MEMS phase-shifter [37], [38] are shown in Fig. 

6. 

Certainly the effort is not restrict to phase-shifters, but is 

applied to all the devices of a low-cost high performance 

phased array, high performance crossovers and efficient an-

tenna arrays. The antennas arrays and their feeding

 

network is also to be carefully considered in different sub-

strates to achieve high gains, and therefore better signal 

range. Electronic high-gain beam steering is necessary to ad-

dress mobile mmW communication for high-power effi-

ciency and to reduce multipath effects and interference. One 

solution for low power beam-steering is the use of Butler 

matrices[39], which direct the beams toward predefined di-

rections [40], shown in Fig. 7. At mmW, the feeding network 

insertion loss of integrated beam-steering antenna arrays in-

creases dramatically; hence, the antenna should be as close 

as possible to the RF transceiver front-end [27], or on the 

interposer, if possible. This explains why several silicon SoC 

or SiP solutions have been proposed in the literature, espe-

cially considering that the size of the antenna arrays (Fig. 8) 

are far larger than all the rest of the system together. 

IV. 3D HYBRID INTEGRATION 

The main idea behind 3D hybrid integration is the use of 

the third dimension - the height, which allows the develop-

ment of more compact Systems-in-Packages (SiP) by stack-

ing several technologies, leading to a hybrid circuit stack. 

The use of hybrid circuits using an interposer allows the use 

of the most appropriate technology in terms of performance 

and cost for each part of the system. On the other hand, in 

mmW, the stacking processes, such as flip-chip, wire-bond-

ing, and beam-lead, are themselves a challenge and have to 

be developed. They work well below 10 GHz, but become 

more and more challenging at frequencies well above this 

[41]. The parasitics of such interconnects limits the use of 

the available bandwidth, while the short wavelength at such 

frequencies imposes challenging manufacturing and assem-

bly tolerance requirements. 

V. MMW CHARACTERIZATION 

On-wafer device characterization are required in order to 

extract the device characteristics from the measured S-pa-

rameter. The accurate characterization of devices in mmW

 

Fig. 5 Fabricated (a) 3D inductor [25] and (b) transformer [26] with its 

3D view (c) on the MnM interposer 
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Fig. 6 Examples of MEMS phase-shifters: (a) slow-wave phase shifter 

fabricated with CEA-Leti MEMS technology; (b) Nanowire-MEMS liq-

uid crystal-based [38] and (c) Nanowire-MEMS air-filled phase shift on 
the MnM interposer 
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Fig. 7 (a) Measured radiation pattern measured of the (b) 60-GHz Butler 
Matrix fabricated on the MnM interposer[39]. 
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is critical and requires efficient measurement and calibration 

methods, as it is very sensitive to problems of contact, drift, 
inaccuracies in calibration and the strong effects of parasitic 

components existing at these frequencies. Therefore, the use 

of specialized equipment, as well as the correct modeling 

and interpretation of measurements are of great importance 

for evaluating the devices and systems performance. The 

typical measurement setup using a probe station and vector 

network analyser is shown in Fig. 9, and the specific setup 

for antennas measurement, in Fig. 10. This setup and tech-

niques at mmW are not trivial, needing an accurate model 

and methods for: equipment calibration; valid calibration 

kit; de-embedding method; parameter extraction from meas-

ure. 

Typically, the device to be characterized is embedded in a 

setup with essential electrical interface up to the probe tips, 

which introduce undesirable parasitic effects in the device 

measurement. These additional parasitics affects the original 

characteristics of the devices and should be mathematically 

subtracted from the measurement in order to get the intrinsic 

characteristics of the device. This subtraction of the un-

wanted parasitic effects is called “de-embedding”[42]. After 

the calibration, a de-embedding step should be

 

performed. 

De-embedding methods based on lumped circuit models of 

the test fixture are highly inaccurate for millimeter-wave ap-

plications due to the distributed nature of the interconnect 

parasitic. Additionally, one cannot eliminate the de-embed-

ding error due to the imperfection of the “short-open” stand-

ards, commonly used for lower frequencies, in these meth-

ods. The standard definitions for calibration methods occupy 
large silicon area but are needed to achieve a reliable and 

real measure and for mmW circuits. In mmW, the most ad-

vised calibration methods are the TRL (Through-Reflect-

Line) [43], although it requires to know the characteristic 

impedance of the line de-embedding structure to set the ref-

erence plane, and can be limited in frequency range; and 

LRRM (Line-Reflect-Reflect-Match). 

VI. CONCLUSION 

3D hybrid integration seems to be the viable alternative for 

the development of low-cost mmW applications for the fu-

ture 6G and beyond, in which large phase arrays with beam-

steering capabilities will be mandatory. Monolithic integra-

tion will lead to prohibitive cost and/or poor performance 

due to the large size of the antennas and passive circuits. 

Further, the combination of different technologies at their 

best will be important to achieve the best performance. 

Therefore, the development of a mmW interposer to com-

bine these technologies and embed the passive circuits is 

very important. 

Here, several building blocks, such as transmission lines, 

TSVs, capacitors, inductors, and also circuits, such as cross-

overs, couplers, baluns, transformers, and antennas operat-

ing up to 110 GHz were presented on the MnM interposer, a 

solution proposed for the low-cost, low-consumption high 

performance mmW systems. 
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Fig. 8 Antenna arrays in 1 x 8 configuration fabricated on the MnM in-

terposer 

Fig. 9 Typical measurement setup for millimeter-wave devices 

Fig. 10 mmW antenna measurement setup 
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