
Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 1

Digital Object Identifier 10.29292/jics.v17i3.679

Abstract— The development of any integrated circuit de-
pends heavily on the quality of the EDA (Electronic Design Au-
tomation) tools used in the design flow. Improved CAD tools
and algorithms are needed to cope with new fabrication tech-
nology requirements, advanced performance constraints, or
simply the enormous number of elements involved. This paper
gives an overview of the importance of automation in the design
process, and a survey of different types of tools presenting some
classifications of the tools. Then some few trends on EDA that
are needed to deal with the evolution of manufacturing pro-
cesses will be presented. Some optimization techniques will be
presented for selected physical design problems (layout). An
important aspect of the design is to reduce power consumption
at all levels of abstraction. Power optimization is fundamental
in nanoCMOS and in the IoT world. At logic and physical lev-
els, one approach that can be used to optimize the circuit, espe-
cially reducing static leakage power and using the automatic
generation of the cell layout. With on-the-fly cell generation, the
same function can be implemented with a reduced number of
transistors, requiring less area and significantly optimizing
power and performance. Finally, the use of estimation and vis-
ualization tools is equally important. They can be applied either
in the design flow or in the tool's development and research en-
vironments as a way to observe and understand the behavior
and interactions of algorithms and their operation on real de-
signs and benchmarks.

Index Terms—EDA, Physical Design Automation, Synthesis,
Optimization, Microelectronics.

I. INTRODUCTION

The scaling of integrated circuits is always bringing new
challenges, demanding new EDA tools to cope with these
new challenges. The quality of the IC designs depends more
and more on the quality of the EDA tools.

The history of EDA tools started with the research and
development of tools for the layout design. Then, with the
increasing level of integration, it was started the develop-
ment of tools to handle the IC synthesis from higher levels
descriptions. Now, it is also possible to find tools that help
to develop new EDA tools.

It is also possible to observe that in the world of internet
of things, the number of devices connected to the internet is
increasing too fast, with an estimation that in 2023, we will
have more than 70 billion devices connected to the internet
of things. This is a main reason for the also increasing fabri-
cation of transistors each year. Fig. 1 (adapted from [1]),
shows the number of transistors produced per year in the
world. If we compare the data from 2017 to 2014, it is pos-
sible to observe that in 3 years, it was increased four times
the number of transistors produced in the world, moving

from 250 quintillion in 2014 to 1 sextillion in 2017.
Every second of 2017, 32 trillion transistors were pro-

duced (on average). It is about 100 times the number of stars
in the Milky Way and some 300 times the number of galaxies
in the known universe. It can also be compared with the
about 100 trillion cells that are in the human body.

Till when this increasing number of transistors production
will be viable and why? The main issue is not exactly the
number of fabricated transistors, but the needed energy to
run all these transistors. Energy is increasingly expensive,
and integrated circuits' reliability is also related to power
consumption and power consumption density.

Fig. 1: Number of transistors produced per year in the world (adapted from

2). Adapted from [1]

The challenge is to find new design methodologies gener-
ating optimized circuits and systems, mainly considering
power consumption optimization. Before presenting some
trends to provide optimization at logic and physical design
levels, an overview of EDA tools will be presented, with a
classification of different types of tools.

II. EDA TYPE OF TOOLS

The EDA tools can be classified into different types: ed-
iting tools, analysis and verification tools, estimation tools,
synthesis tools, optimization tools, visualization tools, floor
planning tools, and management ones.

A. Editing Tools

The editing tools describe the specification of a design,
and they can correspond to different levels of abstraction of
a design. The first developed editing tools were the layout

 Ricardo Reis

PGMicro/PPGC, Instituto de Informática, UFRGS, Porto Alegre, Brazil
reis@inf.ufrgs.br

EDA: Overview and Some Trends

2 Ricardo Reis, EDA: Overview and Trends

editors [2], which allow to construct a layout by a composi-
tion of rectangles and polygons, describing the masks related
to the different layers of an IC layout. A layout editor can be
considered a basic tool, but several strategic choices exist
when developing a layout editor. One is to define the data
structure, where the rectangles and polygons will be orga-
nized and stored, and also define the neighboring between
the rectangles and polygons. The fundamental issue is to
choose the proper data structure that is more efficient for vis-
ualization (lecture) and modifications (writing). Some exam-
ples of traditional data structures are: Lists/Arrays, Binary
Trees/ Quaternaries, and Graphs. The most used languages
to describe a layout are: CIF (Caltech Intermediate Format)
that is mainly a description of a list of rectangles and poly-
gons (including position and size) [3], and GDS2 (developed
by CALMA Company from 1971), a binary file format rep-
resenting geometric shapes.

However, we can also have editing tools to handle the log-
ical level, like the schematic editors, that can describe a set
of logic gates and the connections between them, as well the
description of functional blocks. The schematic editors
should be able to handle hierarchy, allowing us to see, for
example, the gates composing a functional block.

Another set of editing tools is the tools to build the de-
scription of circuits using register transfer languages or sys-
tem level languages. Some of these description languages are
Verilog, VHDL, SystemC, SystemVerilog, and others.

B. Analysis and Verification Tools

The Analysis and Verification tools are fundamental to
proving the correctness of each synthesis step of a design
flow. The most traditional verification tools are the simula-
tion ones, where it is a made a comparison of the circuit’s
output values with the expected reference ones. An important
issue is the choice of input vectors for the simulation tools.
There are simulation tools to take care of different levels of
abstraction.

Electrical simulators allow simulating the output signals
from a set of input vectors, verifying the correctness of a cir-
cuit (at the electrical level) and the propagation time of sig-
nals. Well know electrical simulators are HSpice (Synopsys)
and Spectra (Cadence).

Logical simulators allow to simulate and to verify the
correctness of a circuit at the logical level.

Functional simulators can verify the correctness of a cir-
cuit at the functional level.

Behavioral Simulators are used to verify the correctness
of a behavioral description of a circuit.

There are also verification tools to verify if there is no er-
ror considering the layout design rules, like the minimum
distance between layout elements, the minimum dimensions
of these layout elements, the layers composition, and mini-
mal overlapping. These tools are called DRC (Design Rule
Checker). There are DRCs that work on the fly, showing any
violation of a design rule when the designer is doing the lay-
out, as well DRCs that work on batch, doing a full verifica-
tion of the layout after the layout is completed.

Another verification tool is the ERC (Electrical Rule
Checker), which can verify if there are no electrical rule

violations, like a short circuit, for example (Fig. 2).

Fig. 2: Example of a circuit with a short circuit (a) and a corrected one (b)

 The LVS (Layout versus Schematic) tool allows us to
compare the logical description used in the synthesis process
with the logical description extracted from the layout. If the
comparison shows that the circuit’s logical descriptions are
equivalent, that means that the synthesis process from logical
level to layout is correct (logically correct). Two tools must
be used, an electrical extractor and a logical extractor, to ob-
tain a logical description from the layout description.

The electrical extractor [4] does a scan of the layout de-
scription, recognizing transistors and the connections be-
tween them, as well the parasitic resistances, capacitances,
and inductances. It is produced a description of the extracted
transistor network [Fig. 3].

Fig. 3: Electrical circuit (transistor network) extracted from a layout de-
scription

After using the electrical extractor, it is used a logical ex-

tractor [5] to obtain the extracted logical netlist from the ex-
tracted transistor network. The tool recognizes the associa-
tion of parallel and serial transistors to recognize the logical
function realized by a transistor network.
 Another set of verification tools comprises timing analy-
sis tools that do a verification considering the estimated de-
lays of gates and connections [6]. The timing analysis allows
defining the maximal delay of a circuit and which are the
critical paths. Fig. 4 shows in red the critical path of a circuit.
The delay of this critical path is composed of the delay in the
gates on the path as well the delay in connections and
vias/contacts included in this path.

Fig. 4: The red path between e4 and s2 corresponds to the critical path

 Due to the increasing number of components of a circuit,
it is also fundamental the use of formal verification tools
[7] [8], mainly in large circuits, where simulation running

Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 3

time is prohibitive. Formal verification uses mathematical
models/methods and proofs to verify the correctness of a sys-
tem. Formal verification can explore all possible design be-
haviors reasonably and quickly, allowing the verification of
large circuits and systems.

C. Estimation Tools

Estimation tools are fundamental to converging to a valid
solution. In the past, it was possible to verify some designs
that, when the physical design was done, the performance of
the circuit did not cope with the specifications, like consum-
ing more power than the power consumption specification.
A set of estimation tools is needed to estimate power, delay,
and area in different levels of abstraction. The accuracy of
the estimation tool should cope with the need for accuracy to
perform decisions in a specific design abstraction level.

D. Synthesis Tools

 Synthesis tools [9] [10] allow moving from one design
abstraction level to a lower one, a more detailed design ab-
straction level. The design process starts by doing a high-
level abstraction level description of a circuit/system and us-
ing this description as the input of a tool to produce a more
detailed description at a lower level of abstraction. The flow
of synthesis proceeds till reaching a description of the layout
in GDS2. This GDS2 description will be sent to the foundry
[Fig. 5].

Fig. 5: Simplified presentation of different design abstraction levels, in-
cluding the direction of synthesis flow, as well as estimation tools flow

and Verification tools flow. Optimization tools keep the same abstraction
level.

A set of synthesis tools is quite large, including tools for

synthesis from different levels of abstraction. The synthesis
tools can be classified as tools for Behavioral Synthesis,
Structural Synthesis, Logic Synthesis, and Physical Synthe-
sis.
 In the behavioral synthesis [11], the input of the tool is a
circuit/system description using a behavioral description lan-
guage (like Verilog or VHDL), and as the output of the tool,
it is provided a description of the structure of the circuit/sys-
tem. For example, if the input description is: a⇐ b+c+d+f,
where b, c, d, and f are the input variables, one possible out-
put is presented in Fig. 6., where it is used 3 adders to com-
pose the circuit. There are other possible implementations
using fewer adders. At high level synthesis there is always a
compromise between the used resources and scheduling. Fig
7 shows two scheduling options for this example, where

option 1 needs 3 clock cycles to perform the task but uses
only one adder, and option 2, the task needs 2 clock cycles
to execute the task but uses two adders.

Fig. 6: A possible structure for the circuit executing the behavioral descrip-
tion a⇐ b+c+d+f.

 Fig. 7: Two options for scheduling using fewer or more resources.

In the logic synthesis, the input is a structural description
of the circuit/system and the output is a logical description.
The logic synthesis related to combinational circuits can gen-
erate circuits with two logic levels or with multiple logic lev-
els. It can also be produced sequential circuits [12].

In physical synthesis, we have a significant set of tools.
Tools for partitioning, placement, routing, cell generation,
clock network synthesis, gate sizing, IO placement and oth-
ers [13].

1) Partitioning Tools

The partitioning tools can be used to divide a circuit into
different blocks or just used as a first step in the placement
of cells of a functional block without defining the location of
each cell, but defining which cells will stay together in the
same partition. Fig. 8 shows an example of the partition of a
set of cells in 4 partitions. If a partition is being used to divide
the circuit into several circuits or participations that will be
placed in different chips or placed in different locations in
the floor planning of a chip, the target is to have a minimum
of connections between partitions. If a partition is being used
as just a first step in the placement process of a set of cells of
one functional block, the target of connections between par-
titions is the average density of connections of the circuit to
avoid a lack of connections between partitions when they are
placed in the circuit.

Fig. 8: Partition of a set of cells in 4 partitions.

4 Ricardo Reis, EDA: Overview and Trends

2) Placement Tools

The placement tools define the final location of each cell

in a partition. There is a large set of placement algorithms.
The placement is divided into global placement, legalization,
and detailed placement, with tools for each of these three
steps. In global placement, it is done a first draft of the place-
ment, where it is possible to have some cell overlapping. Le-
galization is the step where the cells are moved to eliminate
overlapping. Detailed placement is the step where is done lo-
cal placement optimizations with different goals: optimiza-
tion of wire length, elimination of timing violations, reduc-
tion of power consumption, improvement of routability, and
also manufacturability [14] [15].

Fig. 9: placement of cells of 4 partitions.

The quality of the placement is fundamental to improving

the routing quality. Fig. 10 is an example of this, where, on
the left, we can see the connections to be implemented when
the placement is done using a random algorithm. On the
right, it is possible to see the set of connections implemented
when the placement is done using a simulated annealing al-
gorithm. So, it is clear that a good placement algorithm can
help to obtain a good routing.

Fig. 10: On the left, we can see the connections to be implemented when

the placement is done using a random algorithm. On the right, it is possible
to see the set of connections implemented when the placement is done us-

ing a simulated annealing algorithm.

3) Routing Tools

Routing tools connect a cell's output (transistor network)
with the input of another cell or with several inputs of several
cells. Fig. 11 shows a view of connections done after the
placement of cells.

Fig. 11: Routing between cells that were already placed

The routing is divided into two steps: Global Routing and

Detailed Routing. These steps are done to manage the rout-
ing complexity. The Global Routing step defines routing
spaces that will be used for interconnections. The Detailed
Routing is responsible for the definition of the exact location
of each connection, including the definition of layers and
contacts/vias, in the assigning routes defined by the Global
Routing [16] [17] [18] [19].

Fig. 12 shows the routing of 2 layers (one layer is in black
and the other in blue), where the first red circle on the left
point to a location with a routing congestion, and the red cir-
cle on the right shows a location with a lack of connections.
So, placement and routing algorithms must be aware of con-
gestion and try to avoid them. The placement and routing al-
gorithms must also consider critical paths, trying to minimize
the delay of critical paths, by placing the cells of the critical
paths as close as possible, as well to implement connections
of the critical paths with the shortest possible connections.

Fig. 12: Routing of 2 layers showing locations where there is routing con-
gestion or lack of connection

Nowadays, the placement and routing algorithms should

also be aware of power hot spots, trying to distribute power
as much as possible in all chip area.
.

4) Cell Generation Tools

An extensive set of designs use the traditional standard
cell design methodology, selecting cells from a library. A
vendor cell library generally has from 50 to 100 different
functions with three sizing for each function. The approach
works well, but is far away from providing optimized solu-
tions. In the standard cell approach, there is one step called

Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 5

“technology mapping”, where the equations are changed to
have logic terms corresponding to functions available in the
cell library. This step is in reality a step of deoptimization. If
we want an optimized solution, we need an approach where
it should be possible to implement any transistor network re-
lated to any logic function and any transistor sizing [21] [22].
This topic will be explained better in the next section.

ASTRAN [23] [24] is an example of a layout automatic
design tool that can generate the layout of any transistor net-
work, even a transistor network with a different number of
PMOS and NMOS transistors.

Fig. 13: Set of cell layouts automatically generated with ASTRAN

5) Gate Sizing Tools

Gate Sizing can be divided into Discrete Gate Sizing and

Continuous Gate Sizing. Discrete Gate Sizing is done when
using a Standard Cell Approach. In this option, the transis-
tors can have a few sizes available in the cell library (gener-
ally three sizes). This method is also known as Cell Selection
[25] [26] [27] [28] [29] [30].

In Continuous Gate Sizing the transistors can have any
sizing. For the implementation of transistors with any sizing,
it is needed a tool for Automatic Layout Generation, like
ASTRAN.

6) Clock Tree Synthesis Tools

The clock tree synthesis or clock distribution networks

have been an essential issue in VLSI design. It can be classi-
fied as global, regional, and local clock networks [Fig. 14].
The paper [31] does a detailed description of different ways
of generating clock tree synthesis and the related problems.
The most commonly used clock topologies are the mesh
(grid) and the tree topologies.

7) Metal Fill

Design For Manufacturing (DFM) in modern technologies
demands an extra layout step, that is the metal fill. During
the Chemical Mechanical Polishing (CMP), it is necessary to
have metal fills, it is necessary to have metal fills, to avoid
significant differences between regions with or without
metal. It is filled the empty or white spaces in the layout with
metal polygons to ensure regular planarization of the wafer.
Metal fill is typically done after detailed routing and timing
closure steps. More details can be found in [32]. Another is-
sue for DFM is the implementation of via fill.

Fig. 14: A typical clock architecture with global, regional, and local clock

networks [31].

8) IO Pads Placement

The IO Pads Placement takes care of the IO Pads place-

ment of a circuit. In Fig. 15 it is presented a comparison of
IO Placement using ioPlacer developed by our team at
UFRGS, in the scope of the OpenROAD Project, with a ven-
dor tool [33]. It is possible to observe that ioPlacer provides
very similar results to the ones provided by the vendor tool.
The difference is that ioPlacer, as well as other tools of the
OpenROAD Project, is an open-source tool.

Fig. 15: Comparison of IO Placement using ioPlacer developed in the

scope of the OpenROAD Project, with a vendor tool [33].

E. Optimization Tools

Optimization tools are becoming more and more im-
portant in the design of modern systems, mainly power opti-
mization tools. The optimization has as input a description
of the circuit in one level of abstraction, and it is produced
another equivalent description of the circuit, using the same
description language but as an optimized description. It is
important to have optimization tools to be used in all design
abstraction levels. The final optimization is the summation
of the optimizations performed at each abstraction level [20].

F. Visualization Tools

Visualization tools are used with two main goals. One is
to show to the designer the results obtained in one synthesis
step. Another goal is to show to EDA developers how is

6 Ricardo Reis, EDA: Overview and Trends

evolving the running of a tool, showing animated visualiza-
tion with partial results produced by the tool. Visualization
tools associated with EDA tools help to understand an algo-
rithm’s behavior as well as to evaluate the quality of a solu-
tion and to help the design debug. It can also help in the de-
sign improvement. Fig. 16 shows four steps of the running
of a placement algorithm. Each color represents a different
functional block. It can also be observed that the placement
tools are not biased to generate rectangular functional blocks
as the cells can be placed anywhere but coping with the
forces used by the algorithm. In a placement algorithm, in
general, all cells are in the middle of the circuit when the tool
starts to run. The algorithm moves these cells and tries to de-
fine their final destination. The developer that is implement-
ing the tool can observe how the tool is evolving and what is
the final result. This visualization helps a lot to improve the
algorithm. The designers using the tool can observe the qual-
ity of the obtained results.

Fig. 16: Four images showing the evolution of a placement algorithm

Fig.17 shows the visualization of the routing of a func-

tional block, where the colour of the wires represents the
number of pins of the net (more pins, hotter is the colour).
For example, the red lines are the ones with a higher number
of pins.

Fig. 17: Visualization of the routing of a block, where the color of the

wires represents the number of pins of the net (more pins, the hotter is the
color)

G. Floor Planning Tools

The floor planning tool is fundamental to estimating the
size and defining the format of a functional block. The team
specialized in the design of one specific functional block
should know what is the area and format of this area before
doing the design of a functional block. Fig. 18 shows an ex-
ample, where Block A is smaller than Block B, but Block B

has the right format to cope with the available space. Even
though Block B is bigger than Block A, it provides a smaller
area for the whole circuit [34] [35].

Fig. 18: Example that the format of a block can be fundamental to provide

a smaller area for a circuit

H. Management Tools

As several circuits and systems are composed of different
types of functional blocks, designed by different design
teams and specialized in designing one type of functional
block, the use of management tools is increasingly essential.
For example, when there are several teams working in paral-
lel in the synthesis of different functional blocks, every team
must be informed when there is a change in the specification,
or in the version of another block, as well as when the design
of another block is ready.

III. SOME EDA TRENDS

One important trend, to cope with the need for power re-
duction and routing issues is the reduction of the transistor
count [36]. Nowadays, several important designs still use
much more transistors than are needed.

Fig. 19 shows the implementation of a small function with
four gates using 14 transistors [20] [21]. The same function
can be implemented by just one gate, as shown in Fig. 20,
needing only eight transistors. It is known that leakage power
(static power) is related to the number of transistors. So, the
implementation with just one gate (8 transistors) has a sig-
nificantly lower power consumption.

Fig. 19: Implementation of a small logic equation using 14 transistors

Also, the three connections between gates existing in the

solution presented in Fig. 19 don’t exist in the solution pre-
sented in Fig. 20. This also means that the contacts/vias used
in the first option, to bring the connections to metal layers,
also were eliminated in the second option using just one gate.
The elimination of some connections is also very significant
and help to reduce routing congestion problems (Fig. 12). It
is important to observe that connections are a major issue in
the design of modern VLSI circuits and systems using a large
number of transistors.

Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 7

Fig. 20: Implementation of the same circuit presented in figure 19, but us-

ing just one gate with eight transistors

When comparing both solutions, the gain with the option
using one gate is not only related to power reduction and the
number of connections reduction, but also a reduction in area
and delay. The delay in the option of figure 20 should be
compared with the summation of the delays of all compo-
nents of the critical path of the solution presented in Fig. 19.
In other words, the delay on option 1, is summation of the
delays of the 3 NOR gates in the path plus the delay in the
connections and vias/contacts existing in the path.

Fig. 21: Number of possible logic functions in relation to the number of
serial NMOS and PMOS transistors [37]

Fig. 21 presents a table from [37] showing the number of
possible functions in function of the number of stacked (se-
rial) PMOS and NMOS transistors. If it is considered a limit
of 4 NMOS and PMOS stacked transistors, it can be obtained
3503 different functions. If the limit is 5 NMOS stacked tran-
sistors and 4 PMOS stacked transistors, the number of pos-
sible functions goes to 28435 different functions. These
numbers are much bigger than the number of functions avail-
able in a traditional standard cell library that has, in general,
from 50 to 100 different functions. So, having the possibility
to use a large number of functions, increase the engineering
space to find optimized solutions using a smaller number of
transistors.

The first layout synthesis tools developed by our group
generate a at once the layout of a full functional block as can
be viewed in Fig. 22, where it is presented the layout of a
functional block that was automatically generated with Par-
rot Tool Suite [22]. It can be observed that the layout density
is significant, but the automatic generation of large func-
tional blocks at once, needs a large running time. Then, with
ASTRAN [23] [24], the approach was changed by generating
the layout of each transistor network (that can be done in par-
allel), followed by a place and route of these transistor net-
works. Nevertheless, ASTRAN can generate the layout of
several transistor networks at once.

Fig. 22: Example of a Layout of a Functional Block Automatically Gener-
ated with Parrot Tool Suite

Fig. 23 shows a table presenting the results related to a

multiplier 4x4 using traditional standard cell approach (and
a vendor tool) and ASTRAN, which has the capacity to gen-
erate the layout of any function as one complex gate. The
main result is a significant reduction in the number of tran-
sistors, which was the main reason for the reduction in power
consumption (mainly static power). However, there was also
an improvement in delay and area reduction [20]. Some in-
teresting research on cell automatic layout synthesis are pre-
sented in [49] [50] [51].

Fig. 23: Comparison of results when synthesizing of a 4x4 multiplier using

a standard cell and a vendor tool with the results obtained when using
ASTRAN.

There are several issues that EDA tools should also con-

sider nowadays, like tolerance to radiation effects. Depend-
ing on the transistor ordering of a transistor network or logic
gate, there is a change in the sensitive nodes [38].

The current density in each connection of the circuit and
pins placement, can define the electromigration probability
and, consequently, the lifetime of a chip [39] [40]. So, EDA
tools should also consider this issue.

That means that the layout description must be modified
before being sent to the foundry by, in general, adding new
rectangles to provide an image printing that will be as close
as possible to the desired layout.

New and Emerging technologies also demands new EDA
tools to take care of some new issues. The design of 3D cir-
cuits using TSV (Through-Silicon Via) needs the use of EDA
to optimize the number of TSVs between tiers [41] [42] [43]
[44]. Also, Monolithic 3D circuits, where each tier of

Transistor-Level Automatic Layout Generation of Radiation-Hardened Circuits

The Layout GeneratorThe Layout Generator

proc generateLayout () {

readNetlist()

readTechnologyRules()

readCellsPlacement()

foreach row {

placeTransistors()

routeTransistors()

CompactLayout()

}

routeCircuit()

writeLayout()

}

8 Ricardo Reis, EDA: Overview and Trends

transistors is deposited over the first tier, demands some spe-
cific new tools [45] [46] [47].

IV. CONCLUSIONS

This paper has done a short overview of EDA tools. For sure,
as the set of existing tools is quite large, many tools were not
included in this short survey. Other papers included in this
special issue provide more details about some of the tools
cited in this survey. The quality of a design depends more
and more on the quality of tools used in the design flow. The
design quality depends not only the set of synthesis tools, but
also on the set of tools for estimation, verification, and opti-
mization. Power optimization is more and more a great issue,
and a way to improve is to reduce the number of transistors.
A trend, and challenge, is to perform the physical design as
a place and route of transistors and not a place and route of
cells from a traditional cell library. There is still plenty of
space and challenge to obtain a new set of tools that can gen-
erate the layout of any transistor network and also provide an
automatic characterization of the synthesized layout. One
challenge is to construct a set of tools that could provide a
layout optimization or layout density closer to the designs
done by hand in the past. The old hand-made chips are still a
source of inspiration in the search for layout optimization
tools [48].

ACKNOWLEDGMENTS

The author would like to acknowledge all students and

former students that are working or that worked in our re-
search projects, as well as my colleague Prof. Marcelo Jo-
hann, a great partner in EDA research.

REFERENCES

[1] Semiconductor Industry Association, 2005, https://www.semiconduc-

tors.org

[2] REIS, Ricardo e Cols., Concepção de Circuitos Integrados, 2ª
Edição. Série Livros Didáticos do Instituto de Informática, Editora
Bookmann, Porto Alegre, 2009, 258 páginas. ISBN 9788577803477

[3] C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA, USA: Addison Wesley, 1980. ISBN: 9780201043587

[4] STEMMER, Marcos Augusto; REIS, Ricardo Augusto da Luz.

EXTRIBO: um Extrator de Circuitos. In: SIMPÓSIO
BRASILEIRO de CONCEPÇÃO de CIRCUITOS INTEGRADOS, 4,
Rio de Janeiro, 12- 14 abr. 1989, Anais. Rio de Janeiro, SBC, 1989.
p. 1-9.

[5] MORAES, Fernando; REIS, Ricardo. EXTRALO - Extrator Lógico,

SIMPÓSIO BRASILEIRO DE CONCEPÇÃO DE CIRCUITOS
INTEGRADOS, 5. Ouro Preto, 24-26 out. 1990. Anais. Ouro Preto:
SBC, 1990. 334p. p. 167-176.

[6] GUNTZEL, J. L., WILKE, G.; PINTO, A. C. M.; REIS, R. A. L. A

Delay Enumeration-Based Timing Analysis Algorithm, 4º Latin-
American Test Workshop - LATW 2003, Natal, Proceedings.

[7] Jain, Jawahar & Narayan, Amit & Fujita, Masahiro & Sangiovanni-

Vincentelli, Alberto. (1997). A Survey of Techniques for Formal
Verification of Combinational Circuits. P. 445-454. DOI:
10.1109/ICCD.1997.628907.

[8] Rolf Drechsler, Formal Verification of Circuits, Springer, 2010, 179
p., DOI:10.1007/978-1-4757-3184-2

[9] G. D. Micheli, Synthesis and Optimization of Digital Circuits.

McGraw-Hill Higher Education, 1994. ISBN: 978-0070163331

[10] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI Physical
Design: From Graph Partitioning to Timing Closure, 2nd ed.
Springer Publishing Company, 2022. DOI: 10.1007/978-3-030-
96415-3

[11] Elliott, John P.. Understanding Behavioral Synthesis: A Practical

Guide to High-Level Design. Springer US, 2012. ISBN:
9781461550594

[12] Devadas, Srinivas; Ghosh, Abhijit & Keutzer, Kurt William, Logic

Synthesis. Mcgraw-Hill Publishing, 1994. ISBN: 9780070165007

[13] REIS, R., Design Tools and Methods for Chip Physical Design, IN:
Multiprocessor System-on-Chip: Hardware Design and Tool Integra-
tion, Editors: Hübner, Michael; Becker, Jürgen, Springer Science,
2011, p. 155-166, ISBN 978-1-4419-6459-5, DOI 10.1007/978-1-
4419-6459-5

[14] LAZZARI, C., ANGHEL, L.; REIS, R., A Transistor Placement

Technique Using Genetic Algorithm and Analytical Program-

ming. IN: VLSI-SOC: From Systems to Silicon. Springer, 2007, ISBN
978-0-387-73660-0. pp. 331- 344.

[15] FOGAÇA, M., KAHNG, A., MONTEIRO, E., REIS, R., WANG, L.,

WOO, M., On the Superiority of Modularity-Based Clustering for

Determining Placement-Relevant Clusters, INTEGRATION, Else-
vier. September 2020, Volume 4, pg. 32-44, ISSN 0167-9260, DOI:
10.1016/j.vlsi.2020.03.007

[16] HENTSCHKE, R., NARASIMHAM, J., JOHANN, M., REIS, R.,

Maze Routing Steiner Trees with Delay vs. Wire Length Trade-
off, IEEE Transactions on Very Large Scale Integration, Volume 17,
Issue 8, ISSN 1063-8210, August 2009, p. 1073-1086. DOI:
10.1109/TVLSI.2009.2019798

[17] JOHANN, Marcelo; REIS, Ricardo. A Full Over-the-Cell Routing

Model. In: IFIP VLSI 95, IFIP/IEEE/ACM, Tokyo, Aug. 26 – Sep. 1,
1995, p. 845-850. DOI: 10.1109/ASPDAC.1995.486412

[18] A. B. Kahng, L. Wang, and B. Xu, Tritonroute: The open-source
detailed router, IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 40, no. 3, pp. 547–559, 2021.

[19] M. Pan and C. Chu, Fastroute: A step to integrate global routing

into placement, Proceedings of the 2006 IEEE/ACM International
Conference on Computer-Aided Design, ICCAD '06. New York, NY,
USA: ACM, 2006, p. 464-471

[20] REIS, R., Design Automation of Transistor Networks, a New

Challenge. IEEE International Symposium on Circuits and Systems,
ISCAS2011, Rio de Janeiro, Brazil, May 15-19, 2011. IEEE, p. 2485-
2488, ISBN: 978-1-4244-9472-9. DOI 10.1109/ISCAS.2011.5938108

[21] REIS, Ricardo A New Standard Cell CAD Methodology. In: IEEE

Custom Integrated Circuits Conference, Portland, Oregon, May 4-7,
1987. Proceedings, New York, IEEE, 1987. p. 385-388.

[22] LAZZARI, C., DOMINGUES, C., GUNTZEL, J.; REIS, R., A Novel

Full Automatic Layout Generation Strategy for Static CMOS. IN:
VLSI-SOC: From Systems to Chips. Springer. May 2006. ISBN 0-
387-33402-5.

[23] ZIESEMER, A., REIS, R., Physical Design Automation of Transis-

tors Network, Microelectronics Engineering, V. 148, p. 122-128, De-
cember 2015, Elsevier B.V., ISSN: 0167-9317,
doi:10.1016/j.mee.2015.10.018

[24] ZIESEMER, A., REIS, R., Simultaneous Two-Dimensional Cell

Layout Compaction Using MILP with ASTRAN, ISVLSI2014 -
IEEE Computer Society Annual Symposium on VLSI, July 9-11,

Journal of Integrated Circuits and Systems, vol. 17, n. 03, 2022 9

2014, Tampa, USA, p. 350-355, ISBN: 978-1-4799-3765-3, DOI
10.1109/ISVLSI.2014.79

[25] REIMANN, T., SZE, C., REIS, R., Challenges of Cell Selection Al-

gorithms in Industrial High Performance Microprocessor De-
signs, Integration, Elsevier B. V., Volume 52, January 2016, Pages
347-354, ISSN: 0167-9260, doi:10.1016/j.vlsi.2015.09.001

[26] POSSER, G., FLACH, G., WILKE, G., REIS, R., Gate Sizing using

Geometric Programming. In: Second IEEE Latin American Sympo-
sium on Circuits and Systems – LASCAS 2011, Bogotá, February 23-
25, 2011, 4 p., ISBN 978-1-4244-9484-2. DOI
10.1109/LASCAS.2011.5750263

[27] POSSER, G., FLACH, G., WILKE, G., REIS, R., Gate Sizing Mini-

mizing Delay and Area, ISVLSI2011. IEEE Computer Society An-
nual Symposium on VLSI, Chennai, India, July 4-6, 2011. p. 315-316,
ISBN 978-0-7695-4447-2. DOI 10.1109/ISVLSI.2011.92

[28] REIMANN, T., POSSER, G., FLACH, G., JOHANN, G., REIS, R.,

Simultaneous Gate Sizing and Vt Assignment Using Fanin/Fanout
Ratio and Simulated Annealing. IEEE International Symposium on
Circuits and Systems, ISCAS2013, Beijing, China, May 19-23, 2013.
P. 2549-2552, IEEE, ISBN 978-1-4673-5762-3, DOI:
10.1109/ISCAS.2013.6572398

[29] FLACH, G., REIMANN, T., POSSER, G., JOHANN, G., REIS, R.,

Simultaneous Gate Sizing and Vth Assignment using Lagrangian
Relaxation and Delay Sensitivities, ISVLSI2013. IEEE Computer
Society Annual Symposium on VLSI, Natal, Brazil, August 5-7, 2013.
p. 84-87, DOI: 10.1109/ISVLSI.2013.6654627

[30] REIMANN, T., SZE, C., REIS, R., Cell Selection for High-Perfor-

mance Designs in an Industrial Design Flow, ACM International
Symposium on Physical Design, ISPD 2016, Sonoma, USA, April 3-
6, 2016. pp. 65-72, ISBN: 978-1-4503-4039-7,
DOI:10.1145/2872334.2872358

[31] GUTHAUS, M., WILKE, G., REIS, R., Revisiting Automated Phys-

ical Synthesis of High-Performance Clock Networks, ACM
TODAES - ACM Transactions on Design Automation of Electronic
Systems, Vol. 18, Issue 2, DOI: 10.1145/2442087.2442102, ISSN:
1084-4309, EISSN:1557-7309, March 2013.

[32] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, Filling

algorithms and analyses for layout density control, IEEE TCAD,
vol. 18, no. 4, pp. 445–462, 1999.

[33] OpenROAD, Openroad, 2022. [Online]. Available: https://

github.com/The- OpenROAD- Project/OpenROAD

[34] REIS, Ricardo Augusto da Luz. Tess; a Topological Evaluator Tool.
In: IEEE INTERNATIONAL CONFERENCE ON CIRCUITS AND
COMPUTERS, New York, Sept. 28 - Oct. 1, 1982. Proceedings. New
York, IEEE, 1982.

[35] REIS, Ricardo Augusto da Luz. A Topological Evaluator as The

First Slep in VlSI Design. In: MICROELECTRONICS, Adelaide,
May 12-14, 1982. Proceedings. Austrália, Institute of Engineers, 1982.
p. 22-26, ISBN (print): 0858251663

[36] CONCEIÇÃO, C., REIS, R., Transistor Count Reduction by Gate

Merging, IEEE Transactions on Circuits and Systems I, Vol. 66, Issue
6, June 2019, ISSN: 1558-0806, DOI: 10.1109/TCSI.2019.2907722.

[37] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni- Vincentelli, and A.

Wang, Technology mapping in MIS, in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, pp. 116-119, 1987

[38] ZIMPECK, A., ARTOLA, L., HUBERT, G., MEINHARDT, C.,

KASTENSMIDT, F., REIS, R., Circuit-Level Hardening Tech-

niques to Mitigate Soft Errors in FinFET Logic Gates, RADECS
2019, 30th European Conference on Radiation and its Effects on

Components and Systems, September 16-20, 2019, Montpellier,
France. 6 p., DOI: 10.1109/RADECS47380.2019.9745706.

[39] POSSER, G., MISHRA, V., JAIN, P., REIS, R., SAPATNEKAR, S.,

Cell-Internal Electromigration: Analysis and Pin Placement
Based Optimization, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 35, N.2, February 2016, p.
220-231, ISSN 0278-0070, DOI: 10.1109/TCAD.2015.2456427

[40] POSSER, G., SAPATNEKAR, S., REIS, R., Electromigration In-

side Logic Cells, Springer, 118 p., 2017, ISBN: 978-3-319-48898-1,
DOI 10.1007/978-3-319-48899-8

[41] HENTSCHKE, R.; SAWICKI, S., JOHANN, M., REIS, R., An Algo-

rithm for I/O Pins Partitioning and Placement Targeting 3D VLSI

Circuits IN: VLSI-SoC: Research Trends in VLSI and Systems on
Chip, Springer, January 2008, ISBN 978-0-387-74908-2. pp. 255-275

[42] HENTSCHKE, R.; SAWICKI, S.; JOHANN, M.; REIS, R., An Algo-

rithm for I/O Partitioning Targeting 3D Circuits and Its Impact
on 3D-Vias. IFIP VLSI-SoC2006, Nice, França, October 16-18, 2006.
P. 128-133. ISBN: 3-901882-19-7, DOI
10.1109/VLSISOC.2006.313216.

[43] SAWICKI, S.; HENTSCHKE, R.; JOHANN, M.; REIS, R, An Algo-

rithm for I/O Pins Partitioning Targeting 3D VLSI Integrated

Circuits, 49th IEEE International Midwest Symposium on Circuits and
Systems, San Juan, Porto Rico, August 7-9, 2006. IEEE Press. DOI:
10.1109/MWSCAS.2006.381827

[44] SAWICKI, S.; HENTSCHKE, R.; JOHANN, M.; REIS, R., Unbalac-

ing the I/O Pins Partitioning for Minimizing Inter-Tier Vias in 3D
VLSI Circuits, 13th IEEE International Conference on Electronics,
Circuits and Systems – ICECS2006, Nice, France, December 10 - 13,
2006, p. 399 – 402, ISBN: 1-4244-0395-2, DOI
10.1109/ICECS.2006.379809.

[45] S. Panth, K. Samadi, Y. Du, and S.K. Lim, Design and CAD Meth-

odologies for Low Power Gate-level Monolithic 3D ICs, IEEE In-
ternational Symposium on Low Power Electronics and Design, 2014.
DOI: 10.1145/2627369.2627642

[46] ZANELLI, J., METZLER, C., REIS, R., Gate Sizing for Power-De-

lay Optimization at Transistor-level Monolithic 3D-Integrated
Circuits, 11th IEEE Latin American Symposium on Circuits and Sys-
tems – LASCAS 2020, San Jose, Costa Rica, February 24-27, 2020.
DOI: 10.1109/LASCAS45839.2020.9069042

[47] Chung-Kuan Cheng; Chia-Tung Ho; Daeyeal Lee; Bill Lin; Dongwon

Park, Complementary-FET (CFET) Standard Cell Synthesis

Framework for Design and System Technology Co-Optimization
Using SMT, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol.: 29, Issue: 6, June 2021. DOI:
10.1109/TVLSI.2021.3065639

[48] REIS, R., Physical Design Optimization, From Past to Future,

ISPD '22: Proceedings of the 2022 International Symposium on
Physical Design, April 2022, Pages 145–148, DOI:
10.1145/3505170.3511040 (Invited Paper)

[49] HENTSCHKE, R., Physical Design at the Transistor Level Beyond

Standard-Cell Methodology, ISPD '22: Proceedings of the 2022 In-
ternational Symposium on Physical Design, April 2022, DOI:
10.1145/3505170.3511476 (Invited Paper)

[50] Haoxing Ren; Matthew Fojtik, NVCell: Standard Cell Layout in

Advanced Technology Nodes with Reinforcement Learning, 58th
ACM/IEEE Design Automation Conference (DAC), 2021. DOI:
10.1109/DAC18074.2021.9586188

[51] P. Cremer, S. Hougardy, J. Schneider, and J. Silvanus. Automatic cell

layout in the 7nm era. ISPD '17: Proceedings of the 2017 ACM on
International Symposium on Physical Design, March 2017, pp 99–
106. DOI: 10.1145/3036669.3036672.

10 Ricardo Reis, EDA: Overview and Trends

[52] A. Sorokin and N. Ryzhenko. Sat-based placement adjustment of

finfets inside unroutable standard cells targetting feasible drc-
clean routing. GLSVLSI '19: Proceedings of the 2019 on Great Lakes
Symposium on VLSI, May 2019 Pages 159–164, DOI:
10.1145/3299874.3317965.

[53] N. Ryzhenko and S. Burns. Standard cell routing via boolean satis-

fiability. ACM/IEEE Design Automation Conference, DAC 2012,
DOI: 10.1145/2228360.2228470

