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Abstract— The development of any integrated circuit de-
pends heavily on the quality of the EDA (Electronic Design Au-
tomation) tools used in the design flow. Improved CAD tools 
and algorithms are needed to cope with new fabrication tech-
nology requirements, advanced performance constraints, or 
simply the enormous number of elements involved. This paper 
gives an overview of the importance of automation in the design 
process, and a survey of different types of tools presenting some 
classifications of the tools. Then some few trends on EDA that 
are needed to deal with the evolution of manufacturing pro-
cesses will be presented. Some optimization techniques will be 
presented for selected physical design problems (layout). An 
important aspect of the design is to reduce power consumption 
at all levels of abstraction. Power optimization is fundamental 
in nanoCMOS and in the IoT world. At logic and physical lev-
els, one approach that can be used to optimize the circuit, espe-
cially reducing static leakage power and using the automatic 
generation of the cell layout. With on-the-fly cell generation, the 
same function can be implemented with a reduced number of 
transistors, requiring less area and significantly optimizing 
power and performance. Finally, the use of estimation and vis-
ualization tools is equally important. They can be applied either 
in the design flow or in the tool's development and research en-
vironments as a way to observe and understand the behavior 
and interactions of algorithms and their operation on real de-
signs and benchmarks. 
 

Index Terms—EDA, Physical Design Automation, Synthesis, 
Optimization, Microelectronics. 

I. INTRODUCTION 

The scaling of integrated circuits is always bringing new 
challenges, demanding new EDA tools to cope with these 
new challenges. The quality of the IC designs depends more 
and more on the quality of the EDA tools.  

The history of EDA tools started with the research and 
development of tools for the layout design. Then, with the 
increasing level of integration, it was started the develop-
ment of tools to handle the IC synthesis from higher levels 
descriptions. Now, it is also possible to find tools that help 
to develop new EDA tools.  

It is also possible to observe that in the world of internet 
of things, the number of devices connected to the internet is 
increasing too fast, with an estimation that in 2023, we will 
have more than 70 billion devices connected to the internet 
of things. This is a main reason for the also increasing fabri-
cation of transistors each year. Fig. 1 (adapted from [1]), 
shows the number of transistors produced per year in the 
world. If we compare the data from 2017 to 2014, it is pos-
sible to observe that in 3 years, it was increased four times 
the number of transistors produced in the world, moving  

 

from 250 quintillion in 2014 to 1 sextillion in 2017.   
Every second of 2017, 32 trillion transistors were pro-

duced (on average). It is about 100 times the number of stars 
in the Milky Way and some 300 times the number of galaxies 
in the known universe. It can also be compared with the 
about 100 trillion cells that are in the human body. 

Till when this increasing number of transistors production 
will be viable and why? The main issue is not exactly the 
number of fabricated transistors, but the needed energy to 
run all these transistors. Energy is increasingly expensive, 
and integrated circuits' reliability is also related to power 
consumption and power consumption density. 

 

 
Fig. 1: Number of transistors produced per year in the world (adapted from 

2). Adapted from [1] 

The challenge is to find new design methodologies gener-
ating optimized circuits and systems, mainly considering 
power consumption optimization. Before presenting some 
trends to provide optimization at logic and physical design 
levels, an overview of EDA tools will be presented, with a 
classification of different types of tools.   

II. EDA TYPE OF TOOLS 

The EDA tools can be classified into different types: ed-
iting tools, analysis and verification tools, estimation tools, 
synthesis tools, optimization tools, visualization tools, floor 
planning tools, and management ones.  

A. Editing Tools 

The editing tools describe the specification of a design, 
and they can correspond to different levels of abstraction of 
a design. The first developed editing tools were the layout 
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editors [2], which allow to construct a layout by a composi-
tion of rectangles and polygons, describing the masks related 
to the different layers of an IC layout. A layout editor can be 
considered a basic tool, but several strategic choices exist 
when developing a layout editor. One is to define the data 
structure, where the rectangles and polygons will be orga-
nized and stored, and also define the neighboring between 
the rectangles and polygons. The fundamental issue is to 
choose the proper data structure that is more efficient for vis-
ualization (lecture) and modifications (writing). Some exam-
ples of traditional data structures are: Lists/Arrays, Binary 
Trees/ Quaternaries, and Graphs. The most used languages 
to describe a layout are: CIF (Caltech Intermediate Format) 
that is mainly a description of a list of rectangles and poly-
gons (including position and size) [3], and GDS2 (developed 
by CALMA Company from 1971), a binary file format rep-
resenting geometric shapes. 

However, we can also have editing tools to handle the log-
ical level, like the schematic editors, that can describe a set 
of logic gates and the connections between them, as well the 
description of functional blocks. The schematic editors 
should be able to handle hierarchy, allowing us to see, for 
example, the gates composing a functional block. 

Another set of editing tools is the tools to build the de-
scription of circuits using register transfer languages or sys-
tem level languages. Some of these description languages are 
Verilog, VHDL, SystemC, SystemVerilog, and others. 

B. Analysis and Verification Tools 

The Analysis and Verification tools are fundamental to 
proving the correctness of each synthesis step of a design 
flow. The most traditional verification tools are the simula-
tion ones, where it is a made a comparison of the circuit’s 
output values with the expected reference ones. An important 
issue is the choice of input vectors for the simulation tools. 
There are simulation tools to take care of different levels of 
abstraction.  

Electrical simulators allow simulating the output signals 
from a set of input vectors, verifying the correctness of a cir-
cuit (at the electrical level) and the propagation time of sig-
nals. Well know electrical simulators are HSpice (Synopsys) 
and Spectra (Cadence). 

Logical simulators allow to simulate and to verify the 
correctness of a circuit at the logical level. 

Functional simulators can verify the correctness of a cir-
cuit at the functional level.  

Behavioral Simulators are used to verify the correctness 
of a behavioral description of a circuit.  

There are also verification tools to verify if there is no er-
ror considering the layout design rules, like the minimum 
distance between layout elements, the minimum dimensions 
of these layout elements, the layers composition, and mini-
mal overlapping. These tools are called DRC (Design Rule 
Checker). There are DRCs that work on the fly, showing any 
violation of a design rule when the designer is doing the lay-
out, as well DRCs that work on batch, doing a full verifica-
tion of the layout after the layout is completed. 

Another verification tool is the ERC (Electrical Rule 
Checker), which can verify if there are no electrical rule 

violations, like a short circuit, for example (Fig. 2). 

 
Fig. 2: Example of a circuit with a short circuit (a) and a corrected one (b) 
 
    The LVS (Layout versus Schematic) tool allows us to 
compare the logical description used in the synthesis process 
with the logical description extracted from the layout. If the 
comparison shows that the circuit’s logical descriptions are 
equivalent, that means that the synthesis process from logical 
level to layout is correct (logically correct). Two tools must 
be used, an electrical extractor and a logical extractor, to ob-
tain a logical description from the layout description.  

The electrical extractor [4] does a scan of the layout de-
scription, recognizing transistors and the connections be-
tween them, as well the parasitic resistances, capacitances, 
and inductances. It is produced a description of the extracted 
transistor network [Fig. 3]. 

 
 

Fig. 3: Electrical circuit (transistor network) extracted from a layout de-
scription 

 
After using the electrical extractor, it is used a logical ex-

tractor [5] to obtain the extracted logical netlist from the ex-
tracted transistor network.  The tool recognizes the associa-
tion of parallel and serial transistors to recognize the logical 
function realized by a transistor network. 
 Another set of verification tools comprises timing analy-
sis tools that do a verification considering the estimated de-
lays of gates and connections [6]. The timing analysis allows 
defining the maximal delay of a circuit and which are the 
critical paths. Fig. 4 shows in red the critical path of a circuit. 
The delay of this critical path is composed of the delay in the 
gates on the path as well the delay in connections and 
vias/contacts included in this path. 
 

 
Fig. 4: The red path between e4 and s2 corresponds to the critical path 

 
     Due to the increasing number of components of a circuit, 
it is also fundamental the use of formal verification tools 
[7] [8], mainly in large circuits, where simulation running 
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time is prohibitive. Formal verification uses mathematical 
models/methods and proofs to verify the correctness of a sys-
tem. Formal verification can explore all possible design be-
haviors reasonably and quickly, allowing the verification of 
large circuits and systems. 

C. Estimation Tools 

Estimation tools are fundamental to converging to a valid 
solution. In the past, it was possible to verify some designs 
that, when the physical design was done, the performance of 
the circuit did not cope with the specifications, like consum-
ing more power than the power consumption specification. 
A set of estimation tools is needed to estimate power, delay, 
and area in different levels of abstraction. The accuracy of 
the estimation tool should cope with the need for accuracy to 
perform decisions in a specific design abstraction level.  

D. Synthesis Tools 

 Synthesis tools [9] [10] allow moving from one design 
abstraction level to a lower one, a more detailed design ab-
straction level. The design process starts by doing a high-
level abstraction level description of a circuit/system and us-
ing this description as the input of a tool to produce a more 
detailed description at a lower level of abstraction. The flow 
of synthesis proceeds till reaching a description of the layout 
in GDS2. This GDS2 description will be sent to the foundry 
[Fig. 5].  

 
Fig. 5: Simplified presentation of different design abstraction levels, in-
cluding the direction of synthesis flow, as well as estimation tools flow 

and Verification tools flow. Optimization tools keep the same abstraction 
level. 

 
A set of synthesis tools is quite large, including tools for 

synthesis from different levels of abstraction. The synthesis 
tools can be classified as tools for Behavioral Synthesis, 
Structural Synthesis, Logic Synthesis, and Physical Synthe-
sis. 
 In the behavioral synthesis [11], the input of the tool is a 
circuit/system description using a behavioral description lan-
guage (like Verilog or VHDL), and as the output of the tool, 
it is provided a description of the structure of the circuit/sys-
tem. For example, if the input description is: a⇐ b+c+d+f, 
where b, c, d, and f are the input variables, one possible out-
put is presented in Fig. 6., where it is used 3 adders to com-
pose the circuit. There are other possible implementations 
using fewer adders. At high level synthesis there is always a 
compromise between the used resources and scheduling. Fig 
7 shows two scheduling options for this example, where 

option 1 needs 3 clock cycles to perform the task but uses 
only one adder, and option 2, the task needs 2 clock cycles 
to execute the task but uses two adders. 

Fig. 6: A possible structure for the circuit executing the behavioral descrip-
tion a⇐ b+c+d+f.  
 

 
 Fig. 7: Two options for scheduling using fewer or more resources. 
 

In the logic synthesis, the input is a structural description 
of the circuit/system and the output is a logical description. 
The logic synthesis related to combinational circuits can gen-
erate circuits with two logic levels or with multiple logic lev-
els. It can also be produced sequential circuits [12].  

In physical synthesis, we have a significant set of tools. 
Tools for partitioning, placement, routing, cell generation, 
clock network synthesis, gate sizing, IO placement and oth-
ers [13].  
 

1) Partitioning Tools 
 

The partitioning tools can be used to divide a circuit into 
different blocks or just used as a first step in the placement 
of cells of a functional block without defining the location of 
each cell, but defining which cells will stay together in the 
same partition. Fig. 8 shows an example of the partition of a 
set of cells in 4 partitions. If a partition is being used to divide 
the circuit into several circuits or participations that will be 
placed in different chips or placed in different locations in 
the floor planning of a chip, the target is to have a minimum 
of connections between partitions. If a partition is being used 
as just a first step in the placement process of a set of cells of 
one functional block, the target of connections between par-
titions is the average density of connections of the circuit to 
avoid a lack of connections between partitions when they are 
placed in the circuit. 

 
Fig. 8: Partition of a set of cells in 4 partitions. 
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2) Placement Tools 

 
The placement tools define the final location of each cell 

in a partition. There is a large set of placement algorithms. 
The placement is divided into global placement, legalization, 
and detailed placement, with tools for each of these three 
steps. In global placement, it is done a first draft of the place-
ment, where it is possible to have some cell overlapping. Le-
galization is the step where the cells are moved to eliminate 
overlapping. Detailed placement is the step where is done lo-
cal placement optimizations with different goals: optimiza-
tion of wire length, elimination of timing violations, reduc-
tion of power consumption, improvement of routability, and 
also manufacturability [14] [15]. 
 

 
Fig. 9: placement of cells of 4 partitions. 

 
The quality of the placement is fundamental to improving 

the routing quality. Fig. 10 is an example of this, where, on 
the left, we can see the connections to be implemented when 
the placement is done using a random algorithm. On the 
right, it is possible to see the set of connections implemented 
when the placement is done using a simulated annealing al-
gorithm. So, it is clear that a good placement algorithm can 
help to obtain a good routing. 

 

 
Fig. 10: On the left, we can see the connections to be implemented when 

the placement is done using a random algorithm. On the right, it is possible 
to see the set of connections implemented when the placement is done us-

ing a simulated annealing algorithm.  
 

3) Routing Tools 
 

Routing tools connect a cell's output (transistor network) 
with the input of another cell or with several inputs of several 
cells. Fig. 11 shows a view of connections done after the 
placement of cells. 

 
Fig. 11: Routing between cells that were already placed 

 
The routing is divided into two steps: Global Routing and 

Detailed Routing. These steps are done to manage the rout-
ing complexity. The Global Routing step defines routing 
spaces that will be used for interconnections. The Detailed 
Routing is responsible for the definition of the exact location 
of each connection, including the definition of layers and 
contacts/vias, in the assigning routes defined by the Global 
Routing [16] [17] [18] [19]. 

Fig. 12 shows the routing of 2 layers (one layer is in black 
and the other in blue), where the first red circle on the left 
point to a location with a routing congestion, and the red cir-
cle on the right shows a location with a lack of connections. 
So, placement and routing algorithms must be aware of con-
gestion and try to avoid them. The placement and routing al-
gorithms must also consider critical paths, trying to minimize 
the delay of critical paths, by placing the cells of the critical 
paths as close as possible, as well to implement connections 
of the critical paths with the shortest possible connections. 
 

 
Fig. 12: Routing of 2 layers showing locations where there is routing con-
gestion or lack of connection 

 
Nowadays, the placement and routing algorithms should 

also be aware of power hot spots, trying to distribute power 
as much as possible in all chip area.  
. 
 

4) Cell Generation Tools 
 

An extensive set of designs use the traditional standard 
cell design methodology, selecting cells from a library. A 
vendor cell library generally has from 50 to 100 different 
functions with three sizing for each function. The approach 
works well, but is far away from providing optimized solu-
tions. In the standard cell approach, there is one step called 
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“technology mapping”, where the equations are changed to 
have logic terms corresponding to functions available in the 
cell library. This step is in reality a step of deoptimization. If 
we want an optimized solution, we need an approach where 
it should be possible to implement any transistor network re-
lated to any logic function and any transistor sizing [21] [22]. 
This topic will be explained better in the next section.  

ASTRAN [23] [24] is an example of a layout automatic 
design tool that can generate the layout of any transistor net-
work, even a transistor network with a different number of 
PMOS and NMOS transistors.  

 
Fig. 13: Set of cell layouts automatically generated with ASTRAN 

 
5) Gate Sizing Tools 

 
Gate Sizing can be divided into Discrete Gate Sizing and 

Continuous Gate Sizing. Discrete Gate Sizing is done when 
using a Standard Cell Approach. In this option, the transis-
tors can have a few sizes available in the cell library (gener-
ally three sizes). This method is also known as Cell Selection 
[25] [26] [27] [28] [29] [30]. 

In Continuous Gate Sizing the transistors can have any 
sizing. For the implementation of transistors with any sizing, 
it is needed a tool for Automatic Layout Generation, like 
ASTRAN. 

 
6) Clock Tree Synthesis Tools 

 
The clock tree synthesis or clock distribution networks 

have been an essential issue in VLSI design. It can be classi-
fied as global, regional, and local clock networks [Fig. 14]. 
The paper [31] does a detailed description of different ways 
of generating clock tree synthesis and the related problems. 
The most commonly used clock topologies are the mesh 
(grid) and the tree topologies. 
 

7) Metal Fill 
 

Design For Manufacturing (DFM) in modern technologies 
demands an extra layout step, that is the metal fill. During 
the Chemical Mechanical Polishing (CMP), it is necessary to 
have metal fills, it is necessary to have metal fills, to avoid 
significant differences between regions with or without 
metal. It is filled the empty or white spaces in the layout with 
metal polygons to ensure regular planarization of the wafer. 
Metal fill is typically done after detailed routing and timing 
closure steps. More details can be found in [32]. Another is-
sue for DFM is the implementation of via fill.  

 
Fig. 14: A typical clock architecture with global, regional, and local clock 

networks [31]. 
 
8) IO Pads Placement 

 
The IO Pads Placement takes care of the IO Pads place-

ment of a circuit. In Fig. 15 it is presented a comparison of 
IO Placement using ioPlacer developed by our team at 
UFRGS, in the scope of the OpenROAD Project, with a ven-
dor tool [33]. It is possible to observe that ioPlacer provides 
very similar results to the ones provided by the vendor tool. 
The difference is that ioPlacer, as well as other tools of the 
OpenROAD Project, is an open-source tool.  
 

 
Fig. 15: Comparison of IO Placement using ioPlacer developed in the 

scope of the OpenROAD Project, with a vendor tool [33]. 
 

E. Optimization Tools 

Optimization tools are becoming more and more im-
portant in the design of modern systems, mainly power opti-
mization tools. The optimization has as input a description 
of the circuit in one level of abstraction, and it is produced 
another equivalent description of the circuit, using the same 
description language but as an optimized description. It is 
important to have optimization tools to be used in all design 
abstraction levels. The final optimization is the summation 
of the optimizations performed at each abstraction level [20]. 

F. Visualization Tools 

Visualization tools are used with two main goals. One is 
to show to the designer the results obtained in one synthesis 
step. Another goal is to show to EDA developers how is 
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evolving the running of a tool, showing animated visualiza-
tion with partial results produced by the tool. Visualization 
tools associated with EDA tools help to understand an algo-
rithm’s behavior as well as to evaluate the quality of a solu-
tion and to help the design debug. It can also help in the de-
sign improvement. Fig. 16 shows four steps of the running 
of a placement algorithm. Each color represents a different 
functional block. It can also be observed that the placement 
tools are not biased to generate rectangular functional blocks 
as the cells can be placed anywhere but coping with the 
forces used by the algorithm. In a placement algorithm, in 
general, all cells are in the middle of the circuit when the tool 
starts to run. The algorithm moves these cells and tries to de-
fine their final destination. The developer that is implement-
ing the tool can observe how the tool is evolving and what is 
the final result. This visualization helps a lot to improve the 
algorithm. The designers using the tool can observe the qual-
ity of the obtained results.  

 
Fig. 16: Four images showing the evolution of a placement algorithm 
 
Fig.17 shows the visualization of the routing of a func-

tional block, where the colour of the wires represents the 
number of pins of the net (more pins, hotter is the colour). 
For example, the red lines are the ones with a higher number 
of pins. 

 

 
Fig. 17: Visualization of the routing of a block, where the color of the 

wires represents the number of pins of the net (more pins, the hotter is the 
color) 

G. Floor Planning Tools 

The floor planning tool is fundamental to estimating the 
size and defining the format of a functional block. The team 
specialized in the design of one specific functional block 
should know what is the area and format of this area before 
doing the design of a functional block. Fig. 18 shows an ex-
ample, where Block A is smaller than Block B, but Block B 

has the right format to cope with the available space. Even 
though Block B is bigger than Block A, it provides a smaller 
area for the whole circuit [34] [35].  

 
Fig. 18: Example that the format of a block can be fundamental to provide 

a smaller area for a circuit 

H. Management Tools 

As several circuits and systems are composed of different 
types of functional blocks, designed by different design 
teams and specialized in designing one type of functional 
block, the use of management tools is increasingly essential. 
For example, when there are several teams working in paral-
lel in the synthesis of different functional blocks, every team 
must be informed when there is a change in the specification, 
or in the version of another block, as well as when the design 
of another block is ready.   

III. SOME EDA TRENDS 

One important trend, to cope with the need for power re-
duction and routing issues is the reduction of the transistor 
count [36]. Nowadays, several important designs still use 
much more transistors than are needed. 

Fig. 19 shows the implementation of a small function with 
four gates using 14 transistors [20] [21]. The same function 
can be implemented by just one gate, as shown in Fig. 20, 
needing only eight transistors. It is known that leakage power 
(static power) is related to the number of transistors. So, the 
implementation with just one gate (8 transistors) has a sig-
nificantly lower power consumption.   

 

 
Fig. 19: Implementation of a small logic equation using 14 transistors 

 
Also, the three connections between gates existing in the 

solution presented in Fig. 19 don’t exist in the solution pre-
sented in Fig. 20. This also means that the contacts/vias used 
in the first option, to bring the connections to metal layers, 
also were eliminated in the second option using just one gate. 
The elimination of some connections is also very significant 
and help to reduce routing congestion problems (Fig. 12). It 
is important to observe that connections are a major issue in 
the design of modern VLSI circuits and systems using a large 
number of transistors.  
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Fig. 20: Implementation of the same circuit presented in figure 19, but us-

ing just one gate with eight transistors 
 

When comparing both solutions, the gain with the option 
using one gate is not only related to power reduction and the 
number of connections reduction, but also a reduction in area 
and delay. The delay in the option of figure 20 should be 
compared with the summation of the delays of all compo-
nents of the critical path of the solution presented in Fig. 19. 
In other words, the delay on option 1, is summation of the 
delays of the 3 NOR gates in the path plus the delay in the 
connections and vias/contacts existing in the path.  

 

 
 
Fig. 21: Number of possible logic functions in relation to the number of 
serial NMOS and PMOS transistors [37] 
 

Fig. 21 presents a table from [37] showing the number of 
possible functions in function of the number of stacked (se-
rial) PMOS and NMOS transistors. If it is considered a limit 
of 4 NMOS and PMOS stacked transistors, it can be obtained 
3503 different functions. If the limit is 5 NMOS stacked tran-
sistors and 4 PMOS stacked transistors, the number of pos-
sible functions goes to 28435 different functions. These 
numbers are much bigger than the number of functions avail-
able in a traditional standard cell library that has, in general, 
from 50 to 100 different functions. So, having the possibility 
to use a large number of functions, increase the engineering 
space to find optimized solutions using a smaller number of 
transistors. 

The first layout synthesis tools developed by our group 
generate a at once the layout of a full functional block as can 
be viewed in Fig. 22, where it is presented the layout of a 
functional block that was automatically generated with Par-
rot Tool Suite [22]. It can be observed that the layout density 
is significant, but the automatic generation of large func-
tional blocks at once, needs a large running time. Then, with 
ASTRAN [23] [24], the approach was changed by generating 
the layout of each transistor network (that can be done in par-
allel), followed by a place and route of these transistor net-
works. Nevertheless, ASTRAN can generate the layout of 
several transistor networks at once. 

 

Fig. 22: Example of a Layout of a Functional Block Automatically Gener-
ated with Parrot Tool Suite 

 
Fig. 23 shows a table presenting the results related to a 

multiplier 4x4 using traditional standard cell approach (and 
a vendor tool) and ASTRAN, which has the capacity to gen-
erate the layout of any function as one complex gate. The 
main result is a significant reduction in the number of tran-
sistors, which was the main reason for the reduction in power 
consumption (mainly static power). However, there was also 
an improvement in delay and area reduction [20]. Some in-
teresting research on cell automatic layout synthesis are pre-
sented in [49] [50] [51]. 

 

 
Fig. 23: Comparison of results when synthesizing of a 4x4 multiplier using 

a standard cell and a vendor tool with the results obtained when using 
ASTRAN.   

 
There are several issues that EDA tools should also con-

sider nowadays, like tolerance to radiation effects. Depend-
ing on the transistor ordering of a transistor network or logic 
gate, there is a change in the sensitive nodes [38].  

The current density in each connection of the circuit and 
pins placement, can define the electromigration probability 
and, consequently, the lifetime of a chip [39] [40]. So, EDA 
tools should also consider this issue.  

That means that the layout description must be modified 
before being sent to the foundry by, in general, adding new 
rectangles to provide an image printing that will be as close 
as possible to the desired layout. 

New and Emerging technologies also demands new EDA 
tools to take care of some new issues. The design of 3D cir-
cuits using TSV (Through-Silicon Via) needs the use of EDA 
to optimize the number of TSVs between tiers [41] [42] [43] 
[44]. Also, Monolithic 3D circuits, where each tier of 

Transistor-Level Automatic Layout Generation of Radiation-Hardened Circuits

The Layout GeneratorThe Layout Generator

proc generateLayout ( ) {

readNetlist( )

readTechnologyRules( )

readCellsPlacement( )

foreach row {

placeTransistors( )

routeTransistors( )

CompactLayout( )

}

routeCircuit( )

writeLayout( )

}
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transistors is deposited over the first tier, demands some spe-
cific new tools [45] [46] [47]. 

 

IV. CONCLUSIONS 

This paper has done a short overview of EDA tools. For sure, 
as the set of existing tools is quite large, many tools were not 
included in this short survey. Other papers included in this 
special issue provide more details about some of the tools 
cited in this survey. The quality of a design depends more 
and more on the quality of tools used in the design flow. The 
design quality depends not only the set of synthesis tools, but 
also on the set of tools for estimation, verification, and opti-
mization. Power optimization is more and more a great issue, 
and a way to improve is to reduce the number of transistors. 
A trend, and challenge, is to perform the physical design as 
a place and route of transistors and not a place and route of 
cells from a traditional cell library. There is still plenty of 
space and challenge to obtain a new set of tools that can gen-
erate the layout of any transistor network and also provide an 
automatic characterization of the synthesized layout. One 
challenge is to construct a set of tools that could provide a 
layout optimization or layout density closer to the designs 
done by hand in the past. The old hand-made chips are still a 
source of inspiration in the search for layout optimization 
tools [48].  
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