
Framework-based Arithmetic Datapath Generation
to Explore Parallel Binary Multipliers

Leandro M. G. Rocha1, Guilherme Paim1, Gustavo M. Santana1,
Eduardo A. C. da Costa2, Sergio Bampi1

1Graduate Program in Microelectronics (PGMicro) - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre - Brazil
2Graduate Program in Electronic Engineering and Computing - Catholic University of Pelotas (UCPel), Pelotas - Brazil

e-mail: {lmgrocha, gppaim, gmsantana, bampi}@inf.ufrgs.br, {eduardo.costa}@ucpel.edu.br

Abstract— Arithmetic modules have a significant impact on
performance, circuit area, energy, and power in digital circuits
for DSP (Digital Signal Processing). Exploring implementation
trade-offs in these circuits is paramount in low-power and low-
cost devices such as sensors for IoT devices, which often have
stringent requirements. Multipliers are of particular concern
due to their ubiquitous use in DSP algorithms and their in-
herent hardware implementation complexity. This work pro-
poses a framework to efficiently generalize and explore differ-
ent compositions of arithmetic operators with an emphasis on
parallel binary multipliers, guiding the designer through the
micro-architecture development. Several partial product en-
coders, combined with multiple compression trees, can be gen-
erated automatically using the proposed framework. Here, we
compare available multipliers in various configurations. Mul-
tipliers were synthesized using a commercial 65 nm standard
cell library to obtain realistic area, power, and timing results.

Index Terms— Parallel multipliers, Adders topologies, VLSI
Design, ASIC.

I. INTRODUCTION

Advances achieved by the semiconductor industry in re-
cent years boosted circuit miniaturization which fostered
the development of embedded applications like digital sig-
nal processing (DSP) system-on-a-chip (SoC), Internet of
Things (IoT), wearable sensors, biomedical circuits, as well
as high-speed and compute-intensive applications like neu-
ral network accelerators and general-purpose processors [1].
These applications have very different requirements in terms
of speed, energy consumption, and development cost, re-
quirements that create an optimization challenge that is hard
to tackle and achieve a balanced solution.

One key optimization point relies on the circuit datapath as
it usually comprises most of the circuit area and complexity.
Specifically, arithmetic circuits like adders and multipliers
tend to be the most significant modules in terms of perfor-
mance, area, energy, and power in digital circuits. Although
there is a vast literature for optimized arithmetic circuits,
choosing the optimal implementation for each application is
a cumbersome, long process, taking valuable time from de-
signers. Each technology node has different characteristics
that may impact the overall Quality of Results (QoR) of the
implemented circuits. Therefore, the best architecture in one
technology may not be optimized or the best solution in an-
other. Hence, it is quintessential to simplify and accelerate
the decision-making process in choosing the optimal circuit
that will achieve the highest QoR.

Multipliers are of particular importance since they are in-
herently more complex than other arithmetic circuits. More-
over, they are used as a base module for other circuits like
filters, convolution units, multiply-accumulate units (MAC),
among others [2]. Parallel multipliers are, in their majority,
composed of three blocks, wherein each may be optimized:
the partial product generation, the compression tree, and the
carry propagating adder. Among the most popular multiplier
architectures are the Wallace multiplier [3] and the Booth
multiplier [4]. However, newer structures like the Radix-
2m [5] have proven to be a promising alternative for power-
aware designs as they have reduced switching activity.

In parallel multipliers, the efficiency of the addition tree
of partial terms can have a substantial impact on the multi-
plier circuit performance. These addition trees rely on the
carry-save scheme to avoid carrying propagation and im-
prove the circuit speed and reduced power dissipation. Ef-
ficient compression trees like Wallace [3] and Dadda [6] can
benefit from 3-2 compressor cells to reduce the tree depth
and switching activity.

Despite the importance of arithmetic circuits for digital
hardware, there are few works which aimed at the develop-
ment of automatic arithmetic core generation. In [7], the au-
thors proposed an RTL generator without any platform con-
straint, but it is limited to a single multiplier with limited in-
put sizes. The work in [8] introduced FloPoCo, a library for
automatic circuit generation for numerical functions used in
scientific computations; however it targets only FPGA plat-
forms and employs device-specific resources. In [9], the au-
thors proposed an optimization to the FloPoCo library using
bit-heaps. Despite being an FPGA-only framework, it fea-
tures a bit-heap structure which is employed in this work.

Hence, this work is an extension of [10] which proposed
RTLGen, a framework to simplify the description of arith-
metic circuits, enabling the exploration of a multitude of cir-
cuit combinations to establish implementation trade-offs in
multiple axes. This framework includes automatic arithmetic
core generation, verification, synthesis, and QoR analysis,
providing an environment to explore the trade-offs of binary
parallel multipliers under different constraints. Therefore,
the main contributions of this work are:

• A comprehensive explanation of the framework modules.

• Comparison of several multiplier architectures for several
input sizes.

• Development of a web interface for public use to generate
arithmetic circuits.

Digital Object Identifier 10.29292/jics.v15i3.91

1Journal of Integrated Circuits and Systems, vol. 15, n. 3, 2020

2 ROCHA et al.: Framework-based Arithmetic Datapath Generation to Explore Parallel Binary Multipliers

The rest of the paper is organized as follows: Section II
presents a review on multiplier circuits. Section III describes
the proposed multiplier generation framework. The frame-
work evaluation methodology with experimental results is
shown in Section IV, and, finally, Section V concludes the
paper.

II. MULTIPLIER CIRCUITS BACKGROUND

To understand the binary multiplication, let’s assume two
numbers, A and X , that are, respectively, m- and n-bit wide,
and P0, P1 · · ·Pn−1 the partial products of A times X , like
the pencil-and-paper method. The logical operation AND be-
tween the multiplicand A and each bit of the multiplier X
can generate these partial products. Next, these partial prod-
ucts are aligned according to their bit-weight, and shifted one
position to the left at a time – i.e., one bit-weight higher.
Then, these products are summed accordingly, obtaining the
desired result. The partial products and their bits can be rep-
resented with a dot diagram to better visualize the design of
the multiplier. Each dot represents a bit of a vector regardless
of its value. Figure 1 shows a dot diagram for a 16-bit mul-
tiplication using the previously described algorithm, where
each row corresponds to a partial product.

Fig. 1: Example of a classic binary multiplication.

For the hardware implementation, we can think of the
multiplication algorithm as having three blocks (see Fig.2).
First, a specific algorithm generates partial products from the
inputs. Binary adders can only add two input operands at a
time. Therefore, next, multipliers feature compression trees
based on the carry-save scheme to reduce these partial prod-
ucts to only two values. Finally, these last two values are
recombined using a carry propagating adder to obtain the fi-
nal result. Figure 2 illustrates the overall architecture of a
generic multiplier.

A. Multiplier Encoders

Choosing the optimal partial product generation (PPG)
strategy for a given set of requirements is of utmost impor-
tance since it impacts both the encoder complexity and the
size of the compression tree. Several PPG encoders have
been proposed in the literature aiming for different optimiza-
tion strategies, including examples like the Modified-Booth
[7, 11] algorithm, Optimized Baugh-Wooley array [12], and
Radix-2m [5] for signed multiplication. Although these al-
gorithms can compute unsigned multiplication with minor

Inputs

PP Generation

Compression Tree

Carry-Propagating Adder

Result

Fig. 2: General architecture for parallel binary multipliers.

tweaks, the traditional array-based multiplication is still used
due to its low complexity.

For unsigned values, the unsigned array approach is the
simplest partial product encoder as it is only composed of
AND gates, as shown in Figure 1. For an n-bit input, there
will be n partial products of n bits. This encoder is rarely
used as it is very limited in terms of applications.

Most signal processing algorithms require signed opera-
tions. In this case, the Booth algorithm is very popular, given
its reported performance [13]. The original Booth algorithm
is not suitable for hardware implementation. Thus, all imple-
mentations are based on the Modified-Booth algorithm pro-
posed in [14]. Several optimizations are proposed to make
the algorithm more hardware-friendly, like pre-calculation of
all sign bits [15] and pre-computation of least-significant bits
(LSBs) for regular PPG circuitry [7], which are integrated
into Figure 3 where xn and yn are the multiplicand and mul-
tiplier bits respectively, and pxy represents the bits of each
partial product. Note that for n-bit inputs, this algorithm
generates dn/2e partial products of size n+ 1.

Fig. 3: Optimized Modified Booth algorithm [7].

Booth multipliers support higher radices to reduce even
further the number of generated partial products. Still,
this approach significantly increases the circuit complexity,
which outweighs the benefits of reducing the compression
tree. The work in [5] proposes a radix-based multiplier us-
ing a recoding technique similar to the Booth algorithm to
tackle this issue. The Radix-2m multiplier split the inputs
into groups of m bits so that they can be seen as individual
multiplications.

There are three basic encoder blocks (Type-I, Type-II, and
Type-III). Each block performs the multiplications of m-bit
inputs according to their signedness. Type-I blocks operate

on unsigned inputs, i.e., they are unused on the N − m least
significant b its of the o perands. Type-II encoders compute
the multiplication of an unsigned value by a signed value,
whereas the Type-III encoder computes the multiplication of
two signed inputs. These encoders are combined accordingly
to generate partial products, as shown in Figure 4, for an
8-bit multiplier. The outputs of the encoders are summed
using a carry propagating adder (CPA) to generate the par-
tial product. Note that for the most significant bits multipli-
cation, Type-I encoders are substituted by Type-II encoders,
and Type-II encoders are substituted by Type-III encoders.

Fig. 4: Partial product generation on the Radix-2m with m = 2.

In this work, we propose a different approach regarding
the utilization of these blocks. Instead of summing the out-
puts of the encoders, we add them directly to the compres-
sion tree to remove the need of the CPA. This proposal is
a trade-off in terms of design complexity since it reduces
the critical path at the expense of removing the regularity of
the partial product array and requiring sign-extension mech-
anisms to ensure the design correctness.

Instead of recoding the partial products as in the Booth
and Radix-2m multipliers, the Baugh-Wooley algorithm aims
for simpler hardware based on the unsigned array. This
scheme also considers both multiplicand and multiplier to
be informed in two’s complement representations, although
the partial products are positive except from the last one,
resulting in simpler hardware. Reordering the partial prod-
ucts, [12] proposes a very regular structure to map this algo-
rithm to hardware efficiently. Figure 5 shows the array struc-
ture of a Baugh-Wooley multiplier, where xn and yn are the
multiplicand and multiplier bits, respectively.

Fig. 5: Partial products scheme for the Baugh-Wooley algorithm
[12].

B. Compression trees

Using binary adders to sum the partial products is not effi-
cient in every aspect due to the carry propagation. Carry-save
adders (CSA) address this issue with a redundant representa-
tion (sum and carry) that operates without carry propagation,
resulting in much faster multipliers. The most common com-
pression algorithms are the Wallace tree [3] and the Dadda
tree [6].

1. Wallace Tree: This approach aims to compress
the partial products as much as possible, as seen
in Figure 6. This algorithm has four steps: (i)
take any group of three bits with the same bit-
weight and sum them using a full-adder. If there
are more bits of the same weight, group them
with either a full- or a half-adder; (ii) propagate
the outputs for the next stage, with the sum bit
having the same weight as the inputs while the
carry bit will have a one-bit higher weight; (iii)
if there is only a single bit left for the current
weight, transfer it to the next level; (iv) repeat
steps i-iii until there are no more than two bits
left in any weight.

Fig. 6: Partial product compression using Wallace tree.

2. Dadda Tree: The Dadda multiplier uses a
slightly different approach to distribute the adder
cells in a carry-save fashion to sum the par-
tial products. This approach uses an algorithm
on which the maximum number of summands
in each stage follows a geometric progression
whose ratio is defined as a function of the com-
pression ratio of the available adder cells.

C. Carry-Propagating Adders (CPA)

All binary adders require the carry to be propagated from
the LSB to the MSB. Hence, the most straightforward way to
execute this operation is using the ripple-carry adder (RCA),
which sequentially computes the sum and the carry-out of
each bit. From Figure 8, it is possible to observe that the
carry-out of the first bit must be passed – or rippled – through
all FA cells, until the leftmost bit.

3Journal of Integrated Circuits and Systems, vol. 15, n. 3, 2020

4 ROCHA et al.: Framework-based Arithmetic Datapath Generation to Explore Parallel Binary Multipliers

Fig. 7: Partial product compression using Dadda tree.

Fig. 8: Structure of an n-bit ripple carry adder.

For larger bit-widths, the CPA adder does not scale given
the long critical path. An optimized variation of this archi-
tecture is the carry select adder, which uses RCA blocks with
the conditional sum principle to pre-compute slices of the fi-
nal result, thus reducing the time needed to operate. This
adder relies on the duplication of each adder block to com-
pute the two carry-in possibilities. Then, a multiplexer se-
lects which block output will be used as the adder output.
Consequently, the critical path becomes the logic to select
the output in addition to the propagation delay of the first
adder block, whose carry-out will be the control signal driv-
ing the selection circuit, as seen in Figure 9.

Fig. 9: Structure of a fixed-group size carry-select adder.

Variable block sizes offer better performance when com-
pared to designs with fixed block sizes, especially if the gate
delays of the targeted technology are well-known in advance.
In this case, each block size can be adjusted according to
the length of the selection circuit, calculated from the adder
start-up to the beginning of the current block, matching both
propagation times – ripple-carry group and selection chain –
and effectively reducing the computation delay.

The fastest family of adders is the parallel-prefix adders
(PPA), which are based on the carry look-ahead technique,
enabling the computation of all carries in parallel with a log-
arithmic time complexity [16]. The Kogge-Stone adder [17]
proposes a regular architecture layout that seeks to calculate

Fig. 10: Carry tree of a 16-bit Kogge-Stone adder.

each carry value as soon as possible while keeping a con-
stant fanout for both black and white processors, as shown in
Figure 10. The black processors implement the propagate-
generate functions according to Equations 1 and 2, while the
white processor only forwards the input data.

Pout = PinP̂in (1)

Gout = Gin + (PinĜin) (2)

In the PPA design, the parallelism level of carry compu-
tation is at its maximum, and, theoretically, it represents the
fastest binary adder architecture, with a temporal complex-
ity ofO(log(n)). However, the massive hardware replication
and high quantity of interconnections might induce routing
problems such as multiple metal layers and higher capac-
itance due to the number of grouped wires, degrading the
final timing.

III. THE RTLGEN FRAMEWORK

Recursive mathematical equations describe particular
arithmetic architectures, and/or they demand extensive mod-
ifications when extending the circuit bit-widths. Hardware
description languages do not easily implement this gener-
icity, and they often require complex construction and ad-
vanced language features. Despite the development of the
available interpreters integrated into the current electronic
design automation (EDA) tools, they still do not process this
type of design efficiently, leading to more unsatisfactory de-
sign results.

To address this problem, we propose a VHDL-based arith-
metic circuit generator framework, named RTLGen, that
moves the design definition complexity to another working
space with a higher abstraction level. It enables the gener-
ation of hierarchical or flat designs without any advanced
language features. Further, it simplifies the circuit com-
position from other blocks as they can be built indepen-
dently and then integrated seamlessly. The framework is
freely available and can be used by the community to gen-
erate custom arithmetic circuits using the following website:
http://lmgrocha.pythonanywhere.com.

Since the generated circuits are created using simple
VHDL constructs in a hierarchical design, the framework
does not rely on any technology node, target platform, or
synthesis tool vendor. This interoperability is especially use-
ful for digital designers that must have granular control of the

design – like critical applications such as cryptography cir-
cuits – or must prototype the hardware in an FPGA platform
before moving to the ASIC flow.

Each generated circuit is contained in a single file with
all the necessary components, instances, and specifications
to describe a hierarchical VHDL design. It removes the ne-
cessity of using custom libraries or language constructs that
require pre-processing to determine the number of instances,
signal width, etc. Additionally, each architecture is accom-
panied by a testbench that enables design verification as well
as the generation of dump files needed for a realistic power
estimation using commercial synthesis tools. Figure 11 il-
lustrates the generation flow for a given set of architecture
parameters using the RTLGen framework.

Circuit Design
(VHDL)

.vhd

Verification
Core

Architecture
Specification

RTLGen
Framework

.sv

Testbench Suite
(SystemVerilog)

Front-end

Back-end RTLGen
Models

Test
Models

Verif. &
Synthesis

Fig. 11: Circuit generation flow of the RTLGen

A. Framework architecture

Creating an abstraction for HDL-described circuits to gen-
erate reusable designs is not trivial. Hence, to tackle this is-
sue, the RTLGen framework is divided into back-end and
front-end engines. Such modularity simplifies the frame-
work to be extended, and to support new features and de-
sign constructs attached to a simple interface to generate the
arithmetic circuits.

The back-end engine provides the language construc-
tion to describe the architectures and the basic arithmetic
modules, enabling the integration of new components such
as partial product encoders, compression trees, and carry-
propagating adders. This engine has three modules whose
interaction is shown in Figure 12. The OPERATIONSCORE
module maps all VHDL combinational and sequential state-
ments, such as logic operations, signal attributions, and oth-
ers into Python classes. It supports operands with different
bit-widths and manages such RTL declarations internally.

Reusing previously described circuits is enabled by the
COMPONENTCORE as it maps the previously generated de-
signs (adders, multipliers, etc.) and specific technology-
related cells into components. This module manages the
automatic instantiation of the component, taking into ac-
count different data sizes and the component declaration. For

the components with an associated RTL, the COMPONENT-
CORE also ensures that the component architecture defini-
tion is integrated into the final circuit design file.

Fig. 12: Back-end framework architecture

Following the VHDL standard, every design has an associ-
ated entity, for the interface, and an architecture for the func-
tionality. The module COREGENERATOR provides the link
between the design architecture and its entity, and it man-
ages the integration with the testbench generation. Hence,
its main attributions are: (i) check all component dependen-
cies, that is, instantiate and declare all external components
used in the design; (ii) declare all internal signals; (iii) create
all combinational operations according to the design model
described using the OPERATIONSCORE functionalities, and
(iv) instantiate the test mechanism according to the parame-
ters specified for the current design.

123456789101112131415

Weigth

Bit list
Bit

Bit hash

#

Fig. 13: Weight-aligned bit-hash for signal management

Once the basic design modules are described using the
framework, the front-end engine provides a simplified view
of such modules, enabling the generation of complete arith-
metic architectures. A key feature in the proposed engine is
the bit-hash data structure similar to the one proposed in [9]
to handle all signal links among submodules used in the de-
sign. This structure operates in a weight-aligned view, i.e.,
each column has a list of signals that are indexed by its bit-
weight, as illustrated in Figure 13. This approach provides
a flexible construction to handle the signals that interconnect
the circuit components, which is quintessential for circuits
like compression trees.

To illustrate how an arithmetic circuit can be described
using RTLGen, Algorithm 1 shows how to generate a mul-
tiplier using the functions provided by the front-end frame-
work. Line 2 builds the hardware that encodes the partial
products (PPs) from the data inputs according to the imple-
mented algorithms (Booth, Radix-2m, and so on). All gen-
erated signals representing the PPs are added to the bit-hash
in line 3 of the algorithm. The logic operations and compo-

5Journal of Integrated Circuits and Systems, vol. 15, n. 3, 2020

6 ROCHA et al.: Framework-based Arithmetic Datapath Generation to Explore Parallel Binary Multipliers

nents employed for PP generation are added to the circuit ar-
chitecture in lines 5 and 6. Lines 8 to 15 process the bit-hash
and reduce it to only two elements in each weight follow-
ing a tree compression algorithm, such as Dadda or Wallace.
Finally, line 16 instantiates a carry propagating adder to cal-
culate the final result. When all these steps are finished, the
framework enables the VHDL file generation to describe the
entire circuit.

Algorithm 1 Multiplier Generation Algorithm

Input: List of operands (A, B) and the desired algorithm for
partial product generation, compression tree and carry
propagating adder;

Output: Data structure containing all VHDL components
and operations to realize the multiplier;

1: Multiplier← new Architecture
2: PPG← GeneratePP(PPGAlg, A, B)
3: BitHash← GetBitHash(PPG)
4: for Operation, Component in PPG do
5: AddOperation(Multiplier, Operation)
6: AddComponent(Multiplier, Component)
7: end for
8: while max(LenCol(BitHash)) > 2 do
9: Tree← CompressTree(CompressAlg, BitHash)

10: BitHash← GetBitHash(Tree)
11: for Operation, Component in Tree do
12: AddOperation(Multiplier, Operation)
13: AddComponent(Multiplier, Component)
14: end for
15: end while
16: Adder← new CPAdder(AdderType,BitHash)
17: AddComponent(Multiplier, Adder)

The Multiplier structure may now be printed to a regular
text file that will contain the VHDL description.

According to the algorithm, at each iteration, the signals
are removed from the bit-heap and attached to the compres-
sion cells. The signals that are not subject to compression at
this point will be ignored. This approach prevents the carry
propagation within the same stage, i. e., the delay in each
stage is guaranteed to be only one compressor cell. Before
the iteration ends, all compressors outputs are inserted back
into the bit-heap. If there is at least one container whose sig-
nal list is longer than two, a new iteration starts, otherwise
the compression stops.

B. Automatic testbench generation

Another embedded feature is the support for automatic
testbench generation. The framework generates SystemVer-
ilog test files that use the state-of-the-art Universal Verifica-
tion Methodology (UVM) [18], which is currently supported
by all major EDA tools. Further, it exploits the HDL lan-
guage capabilities to generate dump files during simulation,
enabling a realistic power estimation in the synthesis tool.

The front-end engine provides methods to set up the
pass/fail checks from a collection of inputs, outputs, and
equations that describe the circuit behavior. This approach
simplifies the verification of adders, multipliers with or with-
out carry-save outputs, approximate arithmetic operators,
and others. It has two verification strategies:

• All-automatic strategy: the simulation tool
randomly generates input vectors and feeds them
to the circuit. The pass/fail equations use these
values to calculate the golden result to be, then,
compared against the circuit output.

• Semi-automatic strategy: the user provides
stimuli files containing both inputs and outputs.
It is useful when real case vectors (images,
videos, waves, etc.) are needed to characterize
the device under test (DUT) or when the outputs
cannot be directly described by a simple logical
or arithmetical equation as in the approximate
operators, for instance.

When setting all testbench parameters, the framework
generates the testbench suite comprising two files. The in-
terface file instantiates the DUT and binds it to the stimuli
generator. Furthermore, it controls the simulation clock pe-
riod as it is fundamental for simulations with post-synthesis
netlists. The second file contains the verification core, which
is responsible for adjustments in the UVM environment to
integrate the pass/fail tests. Depending on the adopted ver-
ification strategy, the core will either contain a file reading
mechanism that provides external stimuli or some routines
that generates random values for the input vectors. Addi-
tionally, it controls the number of tests to be executed, which
is mandatory for an all-automatic strategy, or it stops the test
once all external file values have been read.

IV. FRAMEWORK ANALYSIS

Embedding the UVM verification suite into the proposed
framework guarantees that all described designs are correct.
Therefore, the framework evaluation consists of analyzing
the improvements in the project time-to-market and the team
resources optimization. To evaluate the framework benefits,
consider first a small set of algorithms for the three compo-
nents of a multiplier. Hence, the scope is limited to three par-
tial product generation algorithms (Modified-Booth, modi-
fied version of the Radix-2m [5] and Baugh-Wooley), two
compression algorithms (Wallace and Dadda), and three re-
combination line adders (synthesis tool-inferred adder, carry
select and Kogge-Stone). We also included the tool-inferred
multiplier using the * operator in VHDL.

Some architectures may be more suitable for smaller data
sizes, while others might scale better in larger datapaths.
Hence, we generated multipliers of 8, 16, 32, and 64 bits,
considering all the aforementioned components. This task
would be impractical if they were to be implemented by
hand, even for an experienced designer. Using the frame-
work, however, this task is easily accomplished in seconds,
reducing the time and workload on the design team. Further,
this exploration helps on the characterization of the standard
cell library in which the designs are synthesized, given their
different logic structures.

A. Power Extraction Methodology

Accurate power extraction requires real input vectors to
excite the circuit inputs because the probabilistic switching

Table I.: Circuit Speed, Area and Power Dissipation Comparison @ Maximum Frequency

Wallace Tree Dadda Tree

Size Mult. Adder Fmax C. Area D. Power T. Power Fmax C. Area D. Power T. Power.
(MHz) (µm2) (µW) (µW) (MHz) (µm2) (µW) (µW)

8× 8

Array-Uns
Tool 452.7 1890.2 749.0 751.5 499.7 1962.0 917.7 920.2

C-Select 451.3 2096.1 823.6 826.5 485.8 2212.6 1012.8 1015.8
K-Stone 451.8 2226.6 870.4 873.5 412.1 1855.4 721.8 724.2

M-Booth
Tool 462.5 2450.8 1158.1 1161.7 501.0 2134.6 1273.7 1276.7

C-Select 467.3 2647.3 1243.6 1247.6 497.2 2260.4 1171.5 1174.7
K-Stone 475.3 2840.8 1252.5 1256.7 495.7 2435.2 1263.7 1267.3

Radix-4
Tool 471.7 3571.4 1372.8 1378.0 475.0 2993.1 1195.9 1200.0

C-Select 443.4 3138.2 1177.5 1181.8 452.0 2752.9 1121.8 1125.6
K-Stone 454.5 2918.2 1129.9 1134.0 476.2 3288.0 1243.8 1248.6

B-Wooley
Tool 451.8 1763.8 803.7 806.0 489.6 2068.0 979.0 981.7

C-Select 452.2 2135.6 957.6 960.6 469.6 2126.3 1001.4 1004.3
K-Stone 454.5 2032.2 945.7 948.6 463.1 1966.6 913.9 916.5

S. Tool N/A 401.7 1612.0 709.5 711.6

16× 16

Array-Uns
Tool 380.5 8904.9 2531.5 2542.8 383.3 7100.1 2274.1 2282.5

C-Select 352.4 9483.8 2577.6 2589.8 356.4 7664.8 2221.5 2230.8
K-Stone 357.1 8637.2 2356.5 2367.4 375.5 8087.0 2547.4 2557.5

M-Booth
Tool 396.9 8091.7 2898.2 2909.6 403.0 8522.3 3282.8 3294.6

C-Select 392.8 9111.4 3265.4 3278.4 398.1 8263.8 3202.1 3213.9
K-Stone 390.2 9571.1 3411.4 3425.2 395.1 8700.1 3207.9 3220.1

Radix-4
Tool 365.0 12600.1 3395.8 3412.1 365.4 10657.4 3161.4 3174.7

C-Select 357.1 13119.6 3432.7 3450.0 366.5 12060.4 3417.9 3433.7
K-Stone 352.4 12679.2 3381.6 3398.1 367.8 12212.7 3478.1 3494.0

B-Wooley
Tool 381.3 9107.3 2633.1 2644.7 374.4 6505.7 2151.0 2158.5

C-Select 366.0 9594.4 2789.6 2801.9 372.1 7911.3 2532.3 2542.2
K-Stone 369.3 9814.0 2794.1 2806.9 370.4 7437.6 2369.6 2378.5

S. Tool N/A 395.2 7142.2 2684.2 2693.9

32× 32

Array-Uns
Tool 318.1 35870.1 7845.9 7890.1 322.8 28901.1 7288.1 7321.3

C-Select 290.9 35885.2 7230.9 7274.4 297.9 31844.8 7165.4 7203.7
K-Stone 292.6 36265.3 7264.9 7308.5 316.2 34193.1 8179.1 8220.5

M-Booth
Tool 321.4 29599.4 8119.4 8159.4 331.5 26371.3 7755.7 7789.5

C-Select 308.8 31203.6 8105.6 8149.0 322.6 28861.6 8008.7 8048.3
K-Stone 311.3 31944.6 8241.3 8284.6 324.5 29484.5 8636.5 8675.6

Radix-4
Tool 300.2 44667.0 9564.8 9618.6 293.8 36141.6 8164.8 8204.8

C-Select 275.5 43820.4 8702.3 8754.7 289.6 40287.0 8973.6 9021.1
K-Stone 285.3 43739.8 8921.2 8973.0 293.2 40943.2 9123.8 9172.1

B-Wooley
Tool 311.1 35196.2 7586.0 7629.1 325.7 30972.8 7771.0 7807.7

C-Select 283.1 34287.8 6810.8 6852.2 298.1 32492.7 7336.2 7375.3
K-Stone 282.6 32685.1 6530.9 6570.1 318.2 34278.9 8238.2 8280.2

S. Tool N/A 309.3 22642.9 6596.9 6614.5

64× 64

Array-Uns
Tool 267.1 133899.5 23567.4 23725.3 277.2 107101.3 20835.5 20954.0

C-Select 238.1 128600.2 19900.2 20049.4 250.0 110924.8 19177.5 19300.1
K-Stone 259.7 139051.6 23674.0 23838.7 272.3 117946.4 23352.0 23486.3

M-Booth
Tool 268.9 102998.0 21533.9 21663.3 281.3 95656.1 22675.2 22791.1

C-Select 243.7 104598.0 19983.4 20115.8 255.7 98441.2 20418.2 20543.2
K-Stone 260.6 109949.3 22333.9 22472.3 268.9 99602.4 22138.7 22262.3

Radix-4
Tool 262.1 163242.7 29093.1 29284.9 258.1 145539.7 26902.6 27067.9

C-Select 246.1 172206.8 28994.0 29202.1 242.5 159011.8 26542.3 26729.1
K-Stone 258.2 177336.1 32195.2 32406.6 257.4 168142.0 31122.2 31321.4

B-Wooley
Tool 267.3 128695.8 22744.6 22894.6 281.6 114199.8 23171.1 23301.5

C-Select 243.5 130369.7 20772.5 20925.5 250.0 113492.1 19598.3 19726.8
K-Stone 254.2 129878.8 21729.9 21881.4 270.0 115556.5 22140.9 22270.7

S. Tool N/A 267.5 85302.4 18903.8 19004.9

7Journal of Integrated Circuits and Systems, vol. 15, n. 3, 2020

8 ROCHA et al.: Framework-based Arithmetic Datapath Generation to Explore Parallel Binary Multipliers

activity used as default by synthesis tools is usually too pes-
simistic since they do not model the effects of signal prop-
agation on the power dissipation accurately. These stimuli
vectors are obtained by simulating the synthesized netlist
using a testbench. Further, it is necessary to add the inter-
connection delay through the Standard Delay Format (SDF)
file, which is generated by the synthesis tool. The simula-
tion tool dumps the switching activity into stimuli files like
Value Change Dump (VCD), Toggle Count Format (TCF), or
Switching Activity Interchange Format (SAIF). Finally, the
synthesis tool runs again but using as input the previously
generated netlist and the stimuli file for the power estima-
tion.

Therefore, we use a methodology for precise power dis-
sipation extraction with the following steps [19]. First, all
designs are synthesized with the Cadence Genus Synthe-
sis [20] tool with the Physically-Aware Layout Estimation
(PLE) mode, which includes an estimation of the wire length
and the effects of these wires in terms of area, power dissi-
pation and critical path. Then, stimuli files are generated
through gate-level netlists simulations with SDF files using
the Cadence Incisive Simulation Tool. Finally, the synthesis
tool employs this stimuli file as the switching activity profile,
as summarized in Figure 14.

Toggle Count
Format (.tcf)

ST Microelectronics 65nm Library (.lib)

Testbench (.sv) and
Library Verilog (.v)

Genus
Synthesis

Fig. 14: Synthesis and simulation flow.

B. Synthesis Results

All multipliers were synthesized using the Cadence Genus
Synthesis solution with an ST Microelectronics 65 nm stan-
dard cell library operating at 1.0V supply voltage. Each mul-
tiplier size was synthesized for a specific frequency range to
find the maximum operating frequency within that range. As
our focus relies on exploring the versatility of the RTLGen
framework, the synthesis tool was configured to use the stan-
dard synthesis run settings.

Table I shows the maximum frequency (Fmax), circuit
cell area (C. Area), dynamic power dissipation (D. Power),
and total power dissipation (T. Power) for all the combina-
tions of partial products processing, compression trees, and
carry propagating adders. In this analysis, the synthesis tool-

generated multiplier is used as a reference model to compare
the power dissipation, circuit area, and timing trade-offs.
The results shown are related to the maximum frequency of
each circuit combination.

Results show that although the partial product algorithm
has a meaningful impact on the overall circuit characteristic,
the compression tree has a more substantial impact in all as-
pects (speed, area, and power). Dadda tree-based multipliers
outperformed the Wallace tree-based multipliers in almost
all cases. On average, Dadda-based circuits are 3.3% faster
than their counterparts with a 9.3% smaller cell area, even at
higher speeds.

Regarding the partial product encoders, the Booth multi-
plier performance surpassed the other algorithms in all as-
pects. The good performance is attributed to all the op-
timizations integrated into this architecture, from the LSB
pre-computation to the sign propagation optimization. It is
worth mentioning that the Radix-4 multiplier did not present
a good performance as it is a tweak version if compared to
the original version proposed in [5].

Another remark concerns the Kogge-Stone-based multi-
pliers as, theoretically, they should be the fastest circuits.
Given that the synthesis tool estimates the wire effects, the
wire congestion can become a bottleneck and penalize the
circuit performance, as can be seen in some cases in Table
I. For instance, the 16-bit Booth multiplier using Dadda tree
and carry select adder is slightly faster and is 5% smaller
than the version using the Kogge-Stone adder.

Aiming for a direct quality of results comparison, we syn-
thesized each set of multipliers with the same size aiming a
specific operational frequency, i.e., the target synthesis fre-
quency of multipliers with input size of 8, 16, 32 and 64
bits are 400 MHz, 200 MHz, 133 MHz, and 100 MHz, re-
spectively. The results are shown in Table II and illustrate
the cell area and power dissipation of each multiplier. In this
case, the selected frequencies are considerably lower than the
maximum attainable frequency, which reduces the fan-out
requirements to cope with timing constraints. For all cases,
the multiplier inferred by the synthesis tool has worse results
in terms of area and power when compared to the multipliers
generated by the RTLGen framework.

Further, the results in Table II follow the same trend as the
ones presented in Table I. Dadda-based multipliers have a
smaller area and power dissipation than Wallace-based mul-
tipliers in nearly all cases. The benefits of RTLGen can
clearly be seen in multipliers of 32 and 64 bits as the synthe-
sis tool struggles to find a suitable architecture for that partic-
ular frequency target. For instance, the 32-bit tool-inferred
multiplier has a slightly smaller area than the Baugh-Wooley
version with Wallace tree and tool-inferred adder, yet it dis-
sipates nearly two times more power. The increased energy
dissipation in the tool-inferred multiplier is more prominent
in the 64 bits version, as it dissipates nearly four times more
than the best RTLGen-generated multiplier (Baugh-Wooley,
Dadda Tree, tool-inferred adder).

V. CONCLUSIONS

This paper presented a highly flexible framework to gener-
ate RTL designs for arithmetic operators. The front-end and
back-end engines provide the modularity and extensibility

Table II.: Synthesis QoR Comparison at same frequency.

Wallace Tree Dadda Tree

Size Mult. Adder C. Area D. Power T. Power C. Area D. Power T. Power.
(µm2) (µW) (µW) (µm2) (µW) (µW)

8× 81

Array-Uns
Tool 1566.8 595.4 597.3 1635.4 601.0 603.0

C-Select 2057.1 761.4 764.2 2225.6 774.9 778.0
K-Stone 1880.8 674.7 676.9 2350.9 727.3 730.6

M-Booth
Tool 1603.2 675.8 677.7 2261.0 888.9 892.0

C-Select 2195.4 941.7 944.7 2478.3 994.9 998.3
K-Stone 2019.7 812.2 814.7 2516.3 954.3 957.9

Radix-4
Tool 2136.7 773.6 776.2 2724.3 889.0 892.6

C-Select 2619.8 1037.0 1040.4 3125.2 1134.4 1138.8
K-Stone 3086.7 1062.7 1066.7 2944.2 1017.9 1021.9

B-Wooley
Tool 1694.2 669.9 671.9 1711.8 720.2 722.5

C-Select 2160.6 924.3 927.3 2183.0 826.9 829.8
K-Stone 2050.4 788.5 791.2 2433.1 815.7 819.2

S. Tool N/A 1663.5 814.3 816.5

16× 162

Array-Uns
Tool 4346.7 840.6 844.6 4599.4 786.3 790.2

C-Select 4765.3 933.7 937.8 5181.8 844.1 848.8
K-Stone 3933.3 872.7 875.0 4397.6 783.7 786.6

M-Booth
Tool 4318.1 1072.1 1076.1 4694.6 1123.1 1127.6

C-Select 4705.0 1176.5 1180.7 4887.5 1102.7 1107.2
K-Stone 4471.0 1121.0 1124.3 4784.5 1223.0 1226.9

Radix-4
Tool 5542.2 1001.4 1006.0 6408.0 1031.8 1037.9

C-Select 6128.7 1055.9 1061.5 6526.5 1081.2 1087.1
K-Stone 5386.7 1034.3 1037.7 5303.5 1029.7 1032.9

B-Wooley
Tool 4339.9 814.4 818.0 4637.9 795.4 799.3

C-Select 4585.9 870.7 874.5 5157.9 861.8 866.5
K-Stone 4001.9 909.9 912.3 4422.6 815.6 818.5

S. Tool N/A 4004.0 934.6 938.4

32× 323

Array-Uns
Tool 13600.1 1535.8 1543.7 15838.2 1604.2 1615.2

C-Select 16759.6 2120.6 2133.4 18066.4 1825.7 1840.1
K-Stone 14791.4 2344.6 2352.6 15358.2 1972.4 1980.6

M-Booth
Tool 16138.2 2045.9 2059.5 16860.0 2275.0 2289.4

C-Select 17155.3 2736.0 2751.0 18426.2 2485.7 2502.6
K-Stone 16293.2 2952.7 2964.8 17084.1 2640.7 2653.3

Radix-4
Tool 18439.2 1867.0 1877.3 19914.4 1912.3 1925.0

C-Select 21792.2 2176.3 2194.0 22954.4 2238.1 2256.7
K-Stone 19338.8 2480.2 2490.2 19615.4 2198.2 2208.2

B-Wooley
Tool 13229.8 1565.5 1572.7 15778.4 1596.1 1607.0

C-Select 16574.5 1921.3 1933.9 18015.4 1840.8 1855.2
K-Stone 14455.5 2328.1 2335.6 15116.9 1978.5 1986.5

S. Tool N/A 13136.2 3088.0 3098.9

64× 641

Array-Uns
Tool 51385.9 4012.2 4038.2 54114.3 4132.3 4160.6

C-Select 64745.7 5061.8 5111.1 66808.6 4800.7 4851.4
K-Stone 54457.0 5780.3 5807.1 56538.5 5226.9 5254.9

M-Booth
Tool 58032.0 6450.0 6495.0 64734.3 5765.4 5820.4

C-Select 64599.1 6934.9 6991.5 69560.9 6523.5 6587.4
K-Stone 63822.7 8074.5 8123.3 62884.6 7570.1 7616.8

Radix-4
Tool 70862.5 4695.7 4734.2 72205.6 4660.5 4701.8

C-Select 86803.6 6144.1 6210.1 85311.2 5740.2 5803.9
K-Stone 73161.9 6452.3 6488.9 73372.5 5977.2 6013.8

B-Wooley
Tool 51506.5 4158.7 4185.0 54276.0 4054.3 4082.6

C-Select 63635.5 4849.8 4896.9 66435.2 4820.7 4870.4
K-Stone 54552.2 5767.3 5794.2 56642.0 5170.1 5198.2

S. Tool N/A 56331.6 16262.2 16317.3
1 Target frequency 400 MHz 2 Target frequency 200 MHz 3 Target frequency 133 MHz 4 Target frequency 100 MHz

needed to support new algorithms that may be used in arith-
metic operations, such as new compression trees, pipelining,
etc. Due to the algorithmic-level description of circuits and
the automatic testbench generation system, the framework

proves to be a very efficient tool for digital designers to ex-
plore design alternatives to fulfill the project requirements.

Several architectures were generated through the combi-
nation of partial product generators, compressor trees, and

9Journal of Integrated Circuits and Systems, vol. 15, n. 3, 2020

10 ROCHA et al.: Framework-based Arithmetic Datapath Generation to Explore Parallel Binary Multipliers

¨

recombination adders and synthesized in industrial technol-
ogy for QoR analysis of such designs. Results showed
that state-of-the-art synthesis tools do not have optimized
multiplier-aware mapping algorithms, and the framework
provided several design alternatives that lead to improved
quality of results.

VI. ACKNOWLEDGEMENTS

The authors would like to thank IFRS, CNPq, CAPES and
Fapergs Brazilian agencies for financial support to our re-
search.

REFERENCES

[1] S. Sabeetha, J. Ajayan, S. Shriram, K. Vivek, and V. Rajesh, “A study
of performance comparison of digital multipliers using 22nm strained
silicon technology,” in 2015 2nd International Conference on Elec-
tronics and Communication Systems (ICECS), Feb 2015, pp. 180–184.

[2] L. Z. Pieper, E. A. C. da Costa, and J. C. Monteiro, “Combination of
radix-2mmultiplier blocks and adder compressors for the design of ef-
ficient 2’s complement 64-bit array multipliers,” in 2013 26th Sympo-
sium on Integrated Circuits and Systems Design (SBCCI), Sep. 2013,
pp. 1–6.

[3] C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. on
Electronic Computers, vol. EC-13, no. 1, pp. 14–17, 1964.

[4] R. C. H. S. A. Goldovsky, B. Patel M. Schulte and G. Burns, “Design
and implementation of a 16 by 16 low-power two’s complement mul-
tiplier,” in IEEE International Symposium on Circuits and Systems.
ISCAS 2000, Geneva., vol. 5, 2000, pp. 345–348 vol.5.

[5] E. Costa, S. Bampi, and J. Monteiro, “A new architecture for signed
radix-2m pure array multipliers,” in Proceedings. IEEE International
Conference on Computer Design: VLSI in Computers and Processors,
2002, pp. 112–117.

[6] L. Dadda, “Some Schemes for Parallel Multipliers,” Colloque sur
l’Algèbre de Boole, 1965.

[7] M. Själander and P. Larsson-Edefors, “The Case for HPM-Based
Baugh-Wooley Multipliers,” Chalmers University of Technology,
Goteborg, Sweden, Tech. Rep. 08, 2008.

[8] F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data
Paths with FloPoCo,” IEEE Design Test of Computers, vol. 28, no. 4,
pp. 18–27, 2011.

[9] N. Brunie, F. de Dinechin, M. Istoan, G. Sergent, K. Illyes, and
B. Popa, “Arithmetic core generation using bit heaps,” in 2013 23rd
International Conference on Field programmable Logic and Applica-
tions, Sept 2013, pp. 1–8.

[10] L. M. G. Rocha, G. Paim, R. Ferreira, E. Costa, and S. Bampi,
“Framework-based arithmetic core generation to explore ASIC-based
parallel binary multipliers,” in 2017 24th IEEE International Confer-
ence on Electronics, Circuits and Systems (ICECS), 2017, pp. 478–
481.

[11] G. W. Bewick, “Fast Multiplication : Algorithms and Implementa-
tion,” Ph.D. dissertation, Stanford University, 1994.

[12] M. Hatamian and G. Cash, “A 70-MHz 8-bit x 8-bit parallel pipelined
multiplier in 2.5-µm CMOS,” IEEE Journal of Solid-State Circuits,
vol. 21, no. 4, pp. 505–513, 1986.

[13] A. D. Booth, “A signed binary multiplication technique,” Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, no. 2, pp.
236–240, 1951.

[14] O. Macsorley, “High-Speed Arithmetic in Binary Computers,” Pro-
ceedings of the IRE, vol. 49, no. 1, 1961.

[15] A. A. Farooqui and V. G. Oklobdzija, “General data-path organization
of a MAC unit for VLSI implementation of DSP processors,” ISCAS
’98. Proceedings of the 1998 IEEE International Symposium on Cir-
cuits and Systems, vol. 2, pp. 260–263, 1998.

[16] S. Knowles, “A family of adders,” Proceedings 15th IEEE Symposium
on Computer Arithmetic, pp. 277–284, 2001.

[17] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class of Recurrence Equations,” IEEE Trans. on
Computers, vol. C-22, no. 8, pp. 786–793, 1973.

[18] Accellera Organization, “Universal Verification Methodology
(UVM),” 2012.

[19] G. Paim, L. M. G. Rocha, G. M. Santana, L. B. Soares, E. A. C.
da Costa, and S. Bampi, “Power-, Area-, and Compression-Efficient
Eight-Point Approximate 2-D Discrete Tchebichef Transform Hard-
ware Design Combining Truncation Pruning and Efficient Transposi-
tion Buffers,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 66, pp. 680–693, 2019.

[20] Cadence, “Genus Synthesis Solution,” http://www.cadence.com,
2015.

